作物杂志,2018, 第4期: 2027 doi: 10.16035/j.issn.1001-7283.2018.04.004
柏文恋1,郑毅1,2,肖靖秀1
Bai Wenlian1,Zheng Yi1,2,Xiao Jingxiu1
摘要:
磷是不可再生资源,磷素营养的高效利用一直是人们关注的热点。豆科禾本科间作可提高土壤磷有效性、改善作物磷营养而提高作物生产力。近年来,相关机理研究越来越深入。本文综述了国内外豆科禾本科间作对土壤磷及作物磷素吸收利用的影响,从作物根系形态、根构型、根系分泌物(质子、低分子量有机酸、磷酸酶)、菌根、根际微生物的角度,阐述了豆科禾本科间作提高土壤磷有效性、促进磷高效吸收利用的机制,对进一步深入理解豆科禾本科种间互作响应磷素的根际过程具有十分重要的意义。最后,从定量化研究及间作群体互作方面对今后的研究方向进行了展望。
[1] |
Shen J, Yuan L, Zhang J , et al. Phosphorus dynamics:from soil to plant. Plant Physiology, 2011,156(3):997-1005.
doi: 10.1104/pp.111.175232 |
[2] | Raghothama K G, Kartikeyan A S . Phosphate acquisition. Plant & Soil, 2005,274(1-2):37-49. |
[3] | 李隆 . 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016,24(4):403-415. |
[4] |
苏本营, 陈圣宾, 李永庚 , 等. 间套作种植提升农田生态系统服务功能. 生态学报, 2013,33(14):4505-4514.
doi: 10.5846/stxb201204200574 |
[5] |
Machado S . Does intercropping have a role in modern agriculture? Journal of Soil and Water Conservation, 2009,64(2):55A-57A.
doi: 10.2489/jswc.64.2.55A |
[6] | Buhk C, Alt M, Steinbauer M J , et al. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe-A call to adapt our conservation measures. Science of the Total Environment, 2016,576 : 225-233. |
[7] | 杨亚东, 冯晓敏, 胡跃高 , 等. 豆科作物间作燕麦对土壤固氮微生物丰度和群落结构的影响. 应用生态学报, 2017,28(3):957-965. |
[8] | 冯晓敏, 杨永, 任长忠 , 等. 燕麦/大豆和燕麦/花生间作对根际土壤固氮细菌多样性与群落结构的影响. 中国农业大学学报, 2016,21(1):22-32. |
[9] |
张德闪, 王宇蕴, 汤利 , 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系. 植物营养与肥料学报, 2013,19(1):127-133.
doi: 10.11674/zwyf.2013.0115 |
[10] |
王宇蕴, 任家兵, 郑毅 , 等. 间作小麦根际和土体磷养分的动态变化. 云南农业大学学报, 2011,26(6):851-855.
doi: 10.3969/j.issn.1004-390X(n).2011.06.021 |
[11] | 刘均霞, 陆引罡, 远红伟 , 等. 玉米/大豆间作条件下养分的高效利用机理. 山地农业生物学报, 2007,26(2):105-109. |
[12] |
Wang X, Deng X, Pu T , et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017,204:12-22.
doi: 10.1016/j.fcr.2016.12.020 |
[13] | 代会会, 胡雪峰, 曹明阳 , 等. 豆科间作对番茄产量、土壤养分及酶活性的影响. 土壤学报, 2015,52(4):911-918. |
[14] | 唐秀梅, 钟瑞春, 蒋菁 , 等. 木薯/花生间作对根际土壤微生态的影响. 基因组学与应用生物学, 2015,34(1):117-124. |
[15] |
Bagci E G . Interspecific facilitative root interactions and rhizosphere effects on phosphorus and iron nutrition between mixed grown chickpea and barley. Journal of Plant Nutrition, 2007,30(9):1455-1469.
doi: 10.1080/01904160701555648 |
[16] |
Xia H Y, Zhao J H, Sun J H , et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013,150(15):52-62.
doi: 10.1016/j.fcr.2013.05.027 |
[17] | 李隆 . 间作作物种间促进与竞争使用研究. 北京:中国农业大学, 1999. |
[18] |
李淑敏 . 间作作物吸收磷的种间促进作用机制研究. 北京:中国农业大学, 2004.
doi: 10.7666/d.y658991 |
[19] |
Li C, Dong Y, Li H , et al. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted. Scientific Reports, 2016,6:18663.
doi: 10.1038/srep18663 |
[20] |
Li L, Li S M, Sun J H , et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(27):11192.
doi: 10.1073/pnas.0704591104 |
[21] |
Li L, Zhang F, Li X , et al. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutrient Cycling in Agroecosystems, 2003,65(1):61-71.
doi: 10.1023/A:1021885032241 |
[22] |
李隆, 李晓林, 张福锁 . 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000,6(2):140-146.
doi: 10.11674/zwyf.2000.0203 |
[23] | Hauggard-Nielsen H, Ambus P, Jensen E S . Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops-a field study employing 32P technique . Plant & Soil, 2001,236(1):63-74. |
[24] |
李萍, 刘玉皎 . 高海拔地区蚕豆/马铃薯根系时空分布特征及根系活性研究. 宁夏大学学报(自然科学版), 2013,34(4):338-343.
doi: 10.3969/j.issn.0253-2328.2013.04.012 |
[25] |
Li L, Tilman D, Lambers H , et al. Plant diversity and overyielding:insights from belowground facilitation of intercropping in agriculture. New Phytologist, 2014,203(1):63.
doi: 10.1111/nph.12778 |
[26] |
Li L, Sun J, Zhang F , et al. Root distribution and interactions between intercropped species. Oecologia, 2006,147(2):280-290.
doi: 10.1007/s00442-005-0256-4 pmid: 16211394 |
[27] | 左元梅, 王贺, 李晓林 , 等. 石灰性土壤上玉米/花生间作对花生根系形态变化和生理反应的影响. 作物学报, 1998,24(5):558-563. |
[28] |
孙海国, 张福锁, 杨军芳 . 不同供磷水平小麦苗期根系特征与其相对产量的关系. 华北农学报, 2001,16(3):98-104.
doi: 10.3321/j.issn:1000-7091.2001.03.019 |
[29] | 张恩和, 黄高宝, 黄鹏 . 不同供磷水平下粮豆间套种植对根系分布和根际效应的影响. 草业学报, 1999(3):35-38. |
[30] |
陈杨 . 种间相互作用对大豆、蚕豆和小麦根系形态的影响. 北京:中国农业大学, 2005.
doi: 10.7666/d.y773957 |
[31] |
Li S M, Li L, Zhang F S , et al. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany, 2004,94(2):297.
doi: 10.1093/aob/mch140 pmid: 15238349 |
[32] |
李秋祝, 余常兵, 胡汉升 , 等. 不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异. 植物营养与肥料学报, 2010,16(4):777-785.
doi: 10.11674/zwyf.2010.0401 |
[33] |
Adnane B, Noyce G L, Carlsson G , et al. Species interactions enhance root allocation,microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology, 2017,120(C):179-188.
doi: 10.1016/j.apsoil.2017.08.011 |
[34] |
Neumann G, Romheld V . Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant & Soil, 1999,211(1):121-130.
doi: 10.1023/A:1004380832118 |
[35] |
Li L, Tang C, Rengel Z , et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source. Plant & Soil, 2003,248(1-2):297-303.
doi: 10.1023/A:1022389707051 |
[36] |
Lefebvre D D, Duff S M G, Fife C A ,et al. Response to phosphate deprivation in Brassica nigra suspension cells enhancement of intracellular,cell surface and secreted phosphatase activities compared to increases in Pi-absorption rate. Plant Physiology, 1990,93(2):504-511.
doi: 10.1104/pp.93.2.504 |
[37] |
Inal A, Gunes A, Zhang F , et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology & Biochemistry, 2007,45(5):350-356.
doi: 10.1016/j.plaphy.2007.03.016 pmid: 17467283 |
[38] |
潘相文, 唐才贤, 王光华 , 等. 作物耐低磷适应机制研究进展. 吉林农业大学学报, 2005,27(4):434-441.
doi: 10.3969/j.issn.1000-5684.2005.04.020 |
[39] |
Jones D L . Organic acids in the rhizosphere-a critical review. Plant & Soil, 1998,205(1):25-44.
doi: 10.1023/A:1004356007312 |
[40] |
Hinsinger P, Betencourt E, Bernard L , et al. P for two,sharing a scarce resource:soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 2011,156:1078-1086.
doi: 10.1104/pp.111.175331 |
[41] |
Zhang D, Zhang C, Tang X , et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytologist, 2016,209(2):823-831.
doi: 10.1111/nph.13613 |
[42] |
Ae N, Arihara J, Okada K , et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science, 1990,248(4954):477-480.
doi: 10.1126/science.248.4954.477 pmid: 17815599 |
[43] | 肖靖秀, 郑毅, 汤利 , 等. 小麦-蚕豆间作对根系分泌低分子量有机酸的影响. 应用生态学报, 2014,25(6):1739-1744. |
[44] |
雍太文, 陈小容, 杨文钰 , 等. 小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究. 作物学报, 2010,36(3):477-485.
doi: 10.3724/SP.J.1006.2010.00477 |
[45] | 李淑敏, 李隆, 张福锁 . 蚕豆/玉米间作接种AM真菌与根瘤菌对其吸磷量的影响. 中国生态农业学报, 2005,13(3):136-139. |
[46] | Qiao X, Beis K, Li H G , et al. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant & Soil, 2016,406(1-2):1-13. |
[47] |
李淑敏, 李隆, 张福锁 . 丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用. 中国农业大学学报, 2004,9(1):11-15.
doi: 10.3321/j.issn:1007-4333.2004.01.003 |
[48] | 董艳, 汤利, 郑毅 , 等. 施氮对间作蚕豆根际微生物区系和枯萎病发生的影响. 生态学报, 2010,30(7):1797-1805. |
[49] |
王硕, 张仕颖, 史静 , 等. 丛枝菌根真菌与间作对滇池流域红壤上大豆生长及磷累积的影响. 作物杂志, 2015(6):106-111.
doi: 10.16035/j.issn.1001-7283.2015.06.018 |
[50] |
张宇亭, 朱敏, 线岩相洼 , 等. 接种AM真菌对玉米和油菜种间竞争及土壤无机磷组分的影响. 生态学报, 2012,32(22):7091-7101.
doi: 10.5846/stxb201110251582 |
[51] |
Jalonen R, Timonen S, Sierra J , et al. Arbuscular mycorrhizal symbioses in a cut-and-carry forage production system of legume tree Gliricidia sepium and fodder grass Dichanthium aristatum. Agroforestry Systems, 2013,87(2):319-330.
doi: 10.1007/s10457-012-9553-1 |
[52] |
Gerretsen F C . The influence of microorganisms on the phosphate intake by the plant. Plant & Soil, 1948,1(1):51-81.
doi: 10.1007/BF02080606 |
[53] | 李淑高 . 解磷微生物的研究Ⅱ.施用Bacillus.74型解磷微生物对土壤和作物的影响. 山西农业大学学报(自然科学版), 1982,2(2):46-51. |
[54] |
Illmer P, Barbato A, Schinner F . Solubilization of hardly-soluble A1PO4 with P-solubilizing microorganisms. Soil Biology & Biochemistry, 1995,27(3) : 265-270.
doi: 10.1016/0038-0717(94)00205-F |
[55] | 洪坚平, 谢英荷, Neumann ,等. 两种微生物菌剂对小麦幼苗生长和磷吸收机理的影响研究. 中国生态农业学报, 2008,16(1):105-108. |
[56] | Kucey R M . Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Applied & Environmental Microbiology, 1987,53(12):2699-2703. |
[57] | Tang X, Placella S A, Dayde F , et al. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant & Soil, 2016,407(1-2):1-16. |
[58] | Cheng L, Tang X, Vance C P , et al. Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). 2014,65(12):2995-3003. |
[59] |
Wu P, Ma L, Hou X , et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 2003,132(3):1260-1264.
doi: 10.1104/pp.103.021022 |
[60] |
Abel S, Ticconi C A, Delatorre C A . Phosphate sensing in higher plants. Physiologia Plantarum, 2002,115(1):1-8.
doi: 10.1034/j.1399-3054.2002.1150101.x pmid: 12010462 |
[61] | Coulis M, Bernard L, Gerard F , et al. Endogeic earthworms modify soil phosphorus,plant growth and interactions in a legume-cereal intercrop. Plant & Soil, 2014,379(1-2):149-160. |
[62] |
Santiago D C, ArieiraG D O, De Almeidal E , et al. Responses of soil nematode communities to agroecological crop management systems. Nematology, 2012,14(2):209-221.
doi: 10.1163/138855411X587103 |
[1] | 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161166 |
[2] | 卢培娜,刘景辉,赵宝平,李立军,雷雪峰,张丰屹. 菌肥对盐碱地土壤特性及燕麦根系分泌物的影响[J]. 作物杂志, 2017, (5): 8592 |
[3] | 钟娟,傅志强,刘莉,祝志娟,郑华斌. 水稻植株甲烷传输能力与根系特性的相关性分析[J]. 作物杂志, 2017, (4): 105112 |
[4] | 王宏信,袁祎,杨素丹,刘红梅. 水培对金荞麦生理生化特性及根系形态指标的影响[J]. 作物杂志, 2017, (1): 8387 |
[5] | 王姣,张永清. 干旱胁迫下不同小豆品种根系生长规律研究[J]. 作物杂志, 2016, (6): 112119 |
[6] | 陈颖,周振翔,周天阳,许志伟,王志琴,顾骏飞. 水稻氮高效吸收利用机制及栽培调控措施[J]. 作物杂志, 2016, (6): 2632 |
[7] | 赵乾旭,岳献荣,夏运生,张乃明,年夫照,杨云强,马玉林. 设施条件接种丛枝菌根真菌对紫色土上玉米/大豆生长及氮素利用的影响[J]. 作物杂志, 2016, (5): 94100 |
[8] | 许艳蕊,方志军,卢晓平,穆春华,范秋苹,郝鲁江. 四个玉米自交系根系内生细菌的分离和鉴定[J]. 作物杂志, 2016, (4): 112117 |
[9] | 倪瑞军, 张永清, 庞春花, 等. 黎麦幼苗对水氮耦合变化的可塑性响应[J]. 作物杂志, 2015, (6): 9198 |
[10] | 郭剑, 李彩凤, 桑利敏, 等. Na2CO3胁迫对甜菜幼苗生长、根系活力的影响[J]. 作物杂志, 2015, (5): 141144 |
[11] | 李丽杰, 顾万荣, 王泳超, 等. DCPTA浸种对寒地玉米种子萌发及根系生长的影响[J]. 作物杂志, 2015, (4): 152156 |
[12] | 董守坤, 李雪凝, 赵冲, 等. 干旱胁迫对春大豆根系保护酶活性的影响[J]. 作物杂志, 2015, (2): 163165 |
[13] | 郑伟, 杨国珍, 郭泰, 等. 鼓粒期干旱对黑龙江省不同年代育成大豆品种根系的影响[J]. 作物杂志, 2014, (6): 3943 |
[14] | 乔天长, 赵先龙, 张丽芳, 等. 秸秆腐解液对玉米苗期根系生长的影响[J]. 作物杂志, 2014, (4): 120124 |
[15] | 栗维, 朱海燕, 逢焕成, 等. 深松方式对玉米根系分布及水分利用效率的影响[J]. 作物杂志, 2014, (3): 7780 |
|