作物杂志,2018, 第5期: 54–62 doi: 10.16035/j.issn.1001-7283.2018.05.009

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

山羊草谷胱甘肽S-转移酶基因家族鉴定及表达分析

马建辉,张文利,高小龙,张黛静,姜丽娜,翟延玉,邵云,李春喜   

  1. 河南师范大学生命科学学院,453007,河南新乡
  • 收稿日期:2018-03-08 修回日期:2018-04-20 出版日期:2018-10-15 发布日期:2018-10-12
  • 通讯作者: 李春喜
  • 作者简介:马建辉,副教授,主要从事小麦抗逆生理研究
  • 基金资助:
    “十三五”国家重点研发计划(2017YFD0301101);“十三五”国家重点研发计划(2016YFD0300203-2);“十二五”国家科技支撑计划(2013BAD07B14)

Identification and Expression Analysis of the Whole Glutathione S-Transferase Genome Family in Aegilops tauschii under Abiotic Stress

Ma Jianhui,Zhang Wenli,Gao Xiaolong,Zhang Daijing,Jiang Lina,Zhai Yanyu,Shao Yun,Li Chunxi   

  1. College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
  • Received:2018-03-08 Revised:2018-04-20 Online:2018-10-15 Published:2018-10-12
  • Contact: Chunxi Li

摘要:

谷胱甘肽S-转移酶是一种多功能蛋白酶,在植物体内参与干旱、盐、低温、重金属等多种非生物胁迫的调节;山羊草是普通小麦D染色体组的供体物种,深入挖掘山羊草中GST基因,对进一步分析六倍体小麦GST基因的功能具有重要意义。本研究利用信息生物学手段,在山羊草中共发现114条GST基因序列,分属于6个亚族;基因复制分析发现共4对基因发生了基因复制,且均为纯化选择;采用荧光定量PCR对部分GST基因在非生物胁迫下的表达分析发现,8个GST基因在响应干旱和盐胁迫时,主要在根部显著上调表达,3个GST基因在响应低温胁迫时,在根和叶中均显著上调表达,说明山羊草中的GST基因在应答非生物胁迫时,在不同组织中的表达存在着差异。

关键词: 山羊草, 谷胱甘肽S-转移酶, 全基因组筛选, 非生物胁迫

Abstract:

Glutathione S-transferase (GST) is a multifunctional protease which involves in the regulation process of many abiotic stresses (drought, salt, low temperature, heavy metals) in plants. Aegilops tanschii is the donor of D genome for hexaploid wheat (Triticum aestivum, AABBDD), and the study on GST genome family in Aegilops tanschii (DD) will facilitate the further study of GST in hexaploid wheat. In this study, 114 GST genes from Aegilops tanschii were selected and classified into 6 subfamilies. Gene duplication analysis found that four pairs GST genes had been duplicated and they belonged to purify selection. The expression levels of some GST genes under environmental stress found that eight GST genes were highly expressed in root under drought and salt stress by qRT-PCR assay, in which three GST genes were up-regulated significantly responding to low temperature in root and leaf. This suggested there was a difference in the expression of GSTs in Aegilops tauschii responding to abiotic stress in root and leaf.

Key words: Aegilops tauschii, Glutathione S-transferase, Genome-wide screening, Abiotic stress

表1

荧光定量引物及序列"

基因Gene 上游引物(5′-3′) Forward primer 下游引物(5′-3′) Reverse primer
AEGTA43277 GACGAGGTCTGGGCTTAT GCTTGTCATCAATGTAGGCG
AEGTA19581 GCGATGAAGCCCGTCCTGT TTCCACTCCACCGCCCTGT
AEGTA31937 ACACCGACGAGTCCAATA GGAAGAAAGGTCCATCAC
AEGTA27563 CGACCTCACCCATTTCTCC TCCCACCATGCCTTTACG
AEGTA27835 GGACCTTGGGCTTGGA CTACTCTGCTTTCTTTCGG
AEGTA15985 TCCGTGTCGTGTCTGCG CTCCCTCTCACACACCCACA
AEGTA32578 ACACCGAATCCTGAAACC CTCATCACCAACAACCTCC
AEGTA07316 GCCTACTATGCCGCCAAGA GAAGCGACTTGCCTCTGAC
Actin ACCTTCAGTTGCCCAGCAAT CAGAGTCAAGCACAATACCAGTTG

表2

山羊草GST基因序列的基本信息"

基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
AEGTA13657 390 5.79 14 719.93 GST-C AEGTA25963 372 5.05 13 533.33 GST-N
AEGTA13796 609 8.32 22 678.94 GST-C AEGTA25638 657 5.52 24 109.04 GST-N
AEGTA17736 2196 6.03 80 584.69 GST-C AEGTA25554 444 5.59 16 200.62 GST-N
AEGTA42620 960 9.49 35 732.50 GST-C AEGTA25408 609 5.70 21 048.37 GST-N
AEGTA32322 672 5.98 25 554.08 GST-C AEGTA23490 384 9.10 13 884.20 GST-N
AEGTA31936 1 203 8.26 45 449.39 GST-C AEGTA21507 705 5.48 25 157.07 GST-N
AEGTA29370 2 247 7.21 84 666.01 GST-C AEGTA20866 690 5.46 25 911.98 GST-N
AEGTA29002 642 5.73 24 116.71 GST-C AEGTA20545 501 9.69 19 060.96 GST-N
AEGTA27813 378 8.60 14 194.45 GST-C AEGTA19679 693 4.95 24 756.53 GST-N
AEGTA26775 639 5.58 23 948.80 GST-C AEGTA19581 642 5.54 23 959.65 GST-N
AEGTA26086 741 5.80 26 559.98 GST-C AEGTA18293 741 8.32 27 648.02 GST-N
AEGTA04558 813 6.36 29 861.92 GST-N AEGTA18074 477 5.78 17 388.99 GST-N
AEGTA05063 702 5.20 25 652.54 GST-N AEGTA01785 1 815 6.28 67 887.41 GST-N,GST-C
AEGTA05065 708 5.02 25 716.41 GST-N AEGTA06186 663 5.44 25 070.80 GST-N,GST-C
AEGTA06172 759 5.40 28 974.13 GST-N AEGTA06717 804 5.34 31 072.37 GST-N,GST-C
AEGTA07316 654 4.61 23 214.00 GST-N AEGTA07317 693 5.86 25 879.92 GST-N,GST-C
基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
AEGTA09722 705 5.30 25 149.91 GST-N AEGTA08779 711 8.09 26 568.83 GST-N,GST-C
AEGTA09973 681 5.71 25 328.09 GST-N AEGTA08830 651 5.90 24 455.20 GST-N,GST-C
AEGTA10110 765 5.33 28 262.30 GST-N AEGTA09230 666 5.31 24 986.57 GST-N,GST-C
AEGTA10138 708 5.53 25 204.16 GST-N AEGTA09762 672 6.25 25 398.78 GST-N,GST-C
AEGTA10411 627 5.40 22 926.60 GST-N AEGTA09817 546 6.05 20 564.77 GST-N,GST-C
AEGTA11603 747 5.16 27 138.48 GST-N AEGTA10438 669 5.41 23 999.86 GST-N,GST-C
AEGTA11604 1 092 6.32 39 789.49 GST-N AEGTA11494 765 7.65 28 670.37 GST-N,GST-C
AEGTA14428 633 9.59 22 899.47 GST-N AEGTA12447 909 9.08 33 467.91 GST-N,GST-C
AEGTA15671 699 5.66 25 728.59 GST-N AEGTA12899 690 5.28 25 830.90 GST-N,GST-C
AEGTA16349 627 5.62 23 165.92 GST-N AEGTA13799 648 5.38 24 132.08 GST-N,GST-C
AEGTA16477 708 5.07 25 769.76 GST-N AEGTA14055 648 5.04 24 629.13 GST-N,GST-C
AEGTA17396 501 5.40 18 216.14 GST-N AEGTA16442 603 5.99 22 114.72 GST-N,GST-C
AEGTA19882 723 5.66 26 175.10 GST-N AEGTA17533 729 4.74 26 596.62 GST-N,GST-C
AEGTA43770 714 5.09 24 973.69 GST-N AEGTA17535 663 4.96 24 132.84 GST-N,GST-C
AEGTA43057 711 5.30 26 382.24 GST-N AEGTA15985 1 033 8.37 37 089.78 GST-N,GST-C
AEGTA42860 711 5.74 26 027.62 GST-N AEGTA43277 705 6.45 25 623.80 GST-N,GST-C
AEGTA33169 345 6.40 12 739.92 GST-N AEGTA32560 654 5.61 24 039.74 GST-N,GST-C
AEGTA32907 702 5.22 25 195.97 GST-N AEGTA32323 681 5.98 24 942.60 GST-N,GST-C
AEGTA32578 729 9.05 27 186.61 GST-N AEGTA32272 1 242 6.18 46 835.95 GST-N,GST-C
AEGTA32561 675 5.96 24 978.81 GST-N AEGTA31937 837 5.38 31 118.60 GST-N,GST-C
AEGTA32163 714 5.91 25 910.74 GST-N AEGTA31887 699 5.91 26 142.34 GST-N,GST-C
AEGTA31981 666 5.41 24 879.73 GST-N AEGTA30949 789 6.14 29 087.61 GST-N,GST-C
AEGTA31768 621 5.36 22 760.86 GST-N AEGTA30918 642 5.78 23 465.08 GST-N,GST-C
AEGTA31691 708 5.45 25 312.46 GST-N AEGTA30353 693 5.59 24 828.77 GST-N,GST-C
AEGTA31477 708 5.88 25 038.75 GST-N AEGTA30352 693 5.25 24 817.67 GST-N,GST-C
AEGTA31124 1 062 5.88 38 993.78 GST-N AEGTA30165 696 6.00 25 764.75 GST-N,GST-C
AEGTA30884 699 5.23 25 566.66 GST-N AEGTA28857 675 6.39 25 447.57 GST-N,GST-C
AEGTA30541 720 4.93 25 819.79 GST-N AEGTA28363 696 5.53 25 699.85 GST-N,GST-C
AEGTA30252 669 6.34 25 011.77 GST-N AEGTA27835 669 5.30 24 444.14 GST-N,GST-C
AEGTA29491 612 5.28 23 444.87 GST-N AEGTA27568 651 5.37 24 521.99 GST-N,GST-C
AEGTA29000 702 7.67 25 567.69 GST-N AEGTA27563 669 6.17 24 687.63 GST-N,GST-C
AEGTA28917 693 5.90 25 284.30 GST-N AEGTA27020 726 6.71 26 315.23 GST-N,GST-C
AEGTA28502 726 5.32 25 719.43 GST-N AEGTA26917 762 6.46 28 859.70 GST-N,GST-C
AEGTA28473 798 9.22 31 126.08 GST-N AEGTA26896 675 5.31 24 979.85 GST-N,GST-C
AEGTA27374 663 5.00 25 687.24 GST-N AEGTA26875 732 5.01 26 411.51 GST-N,GST-C
AEGTA27001 834 8.54 30 651.56 GST-N AEGTA26054 660 5.99 25 001.99 GST-N,GST-C
AEGTA26996 711 5.16 25 507.27 GST-N AEGTA25446 678 5.22 25 907.45 GST-N,GST-C
AEGTA26995 708 6.13 26 018.01 GST-N AEGTA21179 834 5.69 30 222.34 GST-N,GST-C
AEGTA26994 711 5.57 25 309.11 GST-N AEGTA20148 657 5.45 24 738.36 GST-N,GST-C
AEGTA26080 786 5.57 29 366.79 GST-N AEGTA18987 690 5.51 25 070.84 GST-N,GST-C
AEGTA25964 714 5.68 26 104.21 GST-N AEGTA18354 702 5.40 26 076.15 GST-N,GST-C

图1

山羊草GST基因的系统进化树"

表3

山羊草GST基因复制分析"

基因Gene 同义突变频率Ks 非同义突变频率Ka Ka/Ks 纯化选择Purify selection 复制时间(Mya)
AEGTA30352-30353 0.1243 0.0217 0.1746 95
AEGTA28363-31887 0.4179 0.1055 0.2525 32
AEGTA20866-28917 0.6575 0.2023 0.3077 50
AEGTA26896-27835 0.2628 0.1189 0.4524 20

图2

GST基因在非生物胁迫下的荧光定量表达分析"

[1] Sies H . Glutathione and its role in cellular functions. Free Radical Biology & Medicine, 1999,27(9):916-921.
[2] Edwards R, Dixon D P, Walbot V . Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends in Plant Science, 2000,5(5):193-198.
doi: 10.1016/S1360-1385(00)01601-0
[3] Öztetik E . A tale of plant glutathione S-transferases:Since 1970. Botanical Review, 2008,74(3):419-437.
doi: 10.1007/s12229-008-9013-9
[4] Cummins I, Dixon D P, Freitag-Pohl S , et al. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metabolism Reviews, 2011,43(2):266-280.
doi: 10.3109/03602532.2011.552910
[5] Marrs K A . The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology & Plant Molecular Biology, 1996,47(1):127-158.
[6] Sheehan D, Meade G, Foley V M . Structure,function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 2001,360(1):1-16.
doi: 10.1042/bj3600001
[7] Dixon D P, Lapthorn A, Edwards R . Plant glutathione transferases. Genome Biology, 2002,401(3):169-186.
[8] McGonigle B, Keeler S J, Lau S M C , et al. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiology, 2000,124(3):1105-1120.
doi: 10.1104/pp.124.3.1105
[9] Soranzo N, Gorla M S, Mizzi L , et al. Organisation and structural evolution of the rice glutathione S-transferase gene family. Molecular Genetics and Genomics, 2004,271(5):511-521.
doi: 10.1007/s00438-004-1006-8
[10] 江董丽, 才华, 柏锡 , 等. 大豆GST基因家族全基因组筛选、分类和表达. 分子植物育种, 2013,4(5):465-475.
[11] 李晓玉, 江海波, 江海洋 , 等. 玉米全基因组谷胱苷肽-S-转移酶基因家族的分析. 安徽农业大学学报, 2013,40(3):350-356.
[12] Wu J, Cramer C L, Hatzios K K . Characterization of two cDNAs encoding glutathione S-transferases in rice and induction of their transcripts by the herbicide safener fenclorim. Physiologia Plantarum, 1999,105(1):102-108.
doi: 10.1034/j.1399-3054.1999.105116.x
[13] Moons A . Osgstu3 and Osgtu4,encoding tau class glutathione S-transferases,are heavy metal and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Letters, 2003,553(3):427-432.
doi: 10.1016/S0014-5793(03)01077-9
[14] 李永生, 方永丰, 李玥 , 等. 玉米逆境响应基因ZmGST23克隆和表达分析. 农业生物技术学报, 2016,24(5):667-677.
[15] Wang Z Y, Cai H, Bai X , et al. Isolation of GsGST19 from Glycine soja and analysis of Saline-Alkaline tolerance for transgenic Medicago sativa. Acta Agronomica Sinica, 2012,38(6):971-979.
[16] 韩少怀, 李佳佳, 张璟曜 , 等. 大豆GmGSTl2基因的克隆及表达分析. 大豆科学, 2015(5):782-788.
[17] Rezaei M K, Shobbar Z S, Shahbazi M , et al. Glutathione S-transferase (GST) family in barley:identification of members,enzyme activity,and gene expression pattern. Journal of Plant Physiology, 2013,170(14):1277-1284.
doi: 10.1016/j.jplph.2013.04.005
[18] Williamson G, Beverley M C . Wheat glutathione S-transferase:purification and properties. Journal of Cereal Science, 1988,8(2):155-163.
doi: 10.1016/S0733-5210(88)80026-2
[19] Mauch F, Hertig C, Rebmann G , et al. A wheat glutathione-S-transferase gene with transposon-like sequences in the promoter region. Plant Molecular Biology, 1991,16(6):1089-1091.
doi: 10.1007/BF00016083
[20] 吴金华, 张西平, 胡言光 , 等. 小麦抗白粉病相关基因GST克隆与表达. 西北植物学报, 2013(1):34-38.
[21] Dixon D, Cole D J, Edwards R . Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbicide substrates in maize (Zea mays). Pest Management Science, 1997,50(1):72-82.
doi: 10.1002/(SICI)1096-9063(199705)50:1<>1.0.CO;2-C
[22] Huala E, Dickerman A W, Garcia-Hernandez M , et al. The Arabidopsis information resource (TAIR):a comprehensive database and web-based information retrieval,analysis,and visualization system for a model plant. Nucleic Acids Research, 2001,29(1):102-105.
doi: 10.1093/nar/29.1.102
[23] Finn R D, Mistry J, Schuster-Böckler B , et al. Pfam:clans,web tools and services. Nucleic Acids Research, 2006,34(s1):247-251.
doi: 10.1093/nar/gkj149
[24] Letunic I, Doerks T, Bork P . SMART 6:recent updates and new developments. Nucleic Acids Research, 2009,37(s1):229-232.
[25] Suyama M, Torrents D, Bork P . PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 2006,34(s2):609-612.
doi: 10.1093/nar/gkl315
[26] Gaut B S, Doebley J F . DNA sequence evidence for the segmental allotetraploid origin of maize. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(13):6809-6814.
doi: 10.1073/pnas.94.13.6809
[27] Peng X, Zhao Y, Cao J , et al. CCCH-type zinc finger family in maize:genome-wide identification,classification and expression profiling under abscisic acid and drought treatments. PloS One, 2012,7(7):e40120.
doi: 10.1371/journal.pone.0040120
[28] Frova C . The plant glutathione transferase gene family:genomic structure,functions,expression and evolution. Physiologia Plantarum, 2003,119(4):469-479.
doi: 10.1046/j.1399-3054.2003.00183.x
[29] 张雪, 陶磊, 乔晟 , 等. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色. 中国生物工程杂志, 2017,37(3):92-98.
[30] Wagner U, Edwards R, Dixon D P , et al. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 2002,49(5):515-532.
doi: 10.1023/A:1015557300450
[31] 戚元成, 张世敏, 王丽萍 , 等. 谷胱甘肽转移酶基因过量表达能加速盐胁迫下转基因拟南芥的生长. 植物生理与分子生物学学报, 2004,30(5):517-522.
[32] Liu D, Liu Y, Rao J , et al. Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Molecular Biology, 2013,47(4):515-523.
doi: 10.1134/S0026893313040109
[33] Ji W, Zhu Y, Li Y , et al. Over-expression of a glutathione S-transferase gene,GsGST,from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnology Letters, 2010,32(8):1173-1179.
doi: 10.1007/s10529-010-0269-x
[34] George S, Venkataraman G, Parida A . A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. Journal of Plant Physiology, 2010,167(4):311-318.
doi: 10.1016/j.jplph.2009.09.004
[35] Xu J, Xing X J, Tian Y S , et al. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PloS One, 2015,10(9):e0136960.
doi: 10.1371/journal.pone.0136960
[36] Yang G, Xu Z, Peng S , et al. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Reports, 2016,35(3):681-692.
doi: 10.1007/s00299-015-1912-8
[37] Zhao J, Zhang S, Yang T , et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiologia Plantarum, 2015,154(3):381-394.
doi: 10.1111/ppl.2015.154.issue-3
[38] Le Martret B, Poage M, Shiel K , et al. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase,glutathione reductase,and glutathione-S-transferase,exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnology Journal, 2011,9(6):661-673.
doi: 10.1111/pbi.2011.9.issue-6
[1] 杨晔, 李晶, 顾万荣, 魏湜. Asr基因家族的研究进展[J]. 作物杂志, 2013, (3): 7–11
[2] 叶兴国, 樊路. ph1b、ph2a、ph2b基因在小麦与卵穗山羊草、小伞山羊草、离果山羊草F1杂种中的作用[J]. 作物杂志, 1993, (1): 16–17
[3] 叶兴国, 樊路. ph1b、ph2a、ph2b基因在小麦与黑麦、粘果山羊草、易变山羊草F1杂种中的作用[J]. 作物杂志, 1992, (4): 15–17
[4] 叶兴国, 樊路. 小麦ph1b、ph2a、ph2b基因系研究初报[J]. 作物杂志, 1992, (1): 3–3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .