作物杂志,2018, 第5期: 85–90 doi: 10.16035/j.issn.1001-7283.2018.05.013

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

陆地棉光合相关性状的QTL定位分析

唐丽媛,李兴河,张素君,王海涛,刘存敬,张香云,张建宏   

  1. 河北省农林科学院棉花研究所/农业部黄淮海半干旱区棉花生物学与遗传育种重点实验室/国家棉花改良中心河北分中心,050051,河北石家庄
  • 收稿日期:2018-03-12 修回日期:2018-05-07 出版日期:2018-10-15 发布日期:2018-10-12
  • 通讯作者: 张建宏
  • 作者简介:唐丽媛,助理研究员,研究方向为棉花遗传育种
  • 基金资助:
    国家重点研发计划项目(2016YFD0101415);河北省科技计划项目(16226303D);河北省农林科学院科学技术研究与发展计划项目(A2015070105)

QTL Mapping for Photosynthesis Related Traits in Upland Cotton

Tang Liyuan,Li Xinghe,Zhang Sujun,Wang Haitao,Liu Cunjing,Zhang Xiangyun,Zhang Jianhong   

  1. Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture/National Cotton Improvement Center Hebei Branch, P.R. China, Shijiazhuang 050051, Hebei, China
  • Received:2018-03-12 Revised:2018-05-07 Online:2018-10-15 Published:2018-10-12
  • Contact: Jianhong Zhang

摘要:

光合作用是棉花产量的主要物质来源。本研究以高光效陆地棉冀优861和低光效陆地棉新陆早25号为亲本组配的196个F2单株为作图群体,利用SSR(Simple Sequence Repeat)标记构建陆陆杂交遗传连锁图谱,共有30个标记位点连锁,包含4个连锁群,全长244.4cM。利用QTL IciMapping 4.1软件的完备区间作图法对冀优861×新陆早25号F2:3家系的光合相关性状进行QTL作图分析,共定位到光合相关5个性状的10个QTLs,其中1个光合速率QTL和1个胞间CO2浓度QTL分别定位在D3和D7染色体上。本研究为棉花光合相关性状QTL的精细定位及分离克隆打下基础,为聚合棉花高光效分子标记辅助育种提供理论依据。

关键词: 棉花, 光合性状, 叶绿素含量, SSR标记, QTL定位

Abstract:

Photosynthesis provides a major material basis for the yield formation of cotton. A genetic linkage map was constructed for an F2 population of 196 cotton plants derived from a cross between two upland cotton parental lines of Jiyou 861 and Xinluzao 25 with SSR (Simple Sequence Repeat) markers. The map included 30 markers distributing in 4 linkage groups, full length 244.4cM. Based on the inclusive composite interval mapping method with QTL IciMapping 4.1, 10 QTLs (quantitative trait locus) were identified in the F2:3 population, including three QTLs for photosynthetic rates, two for stomatal conductance, one for intercellular CO2 concentration, one for transpiration rate and three for chlorophyll content, in which there were one photosynthetic rate QTL and one intercellular CO2 concentration QTL were located on chromosomes of D3 and D7, respectively. The research lays the foundation for fine mapping and cloning of QTL for photosynthesis related traits in cotton and provide a theoretical basis for combining molecular marker assisted breeding with high photosynthetic efficiency in cotton.

Key words: Cotton, Photosynthesis trait, Chlorophyll content, SSR marker, QTL mapping

表1

(冀优861×新陆早25号)亲本及F2:3群体的光合相关性状"

性状
Trait
亲本Parent F2:3群体F2:3 population
冀优861
Jiyou 861
新陆早25号
Xinluzao 25
均值
Mean
极小值
Minimum
极大值
Maximum
标准差
Standard deviation
偏度
Skewness
峰度
Kurtosis
Pn [μmol/(m2·s)] 24.71 13.52 14.74 8.32 25.28 3.24 0.47 0.22
Gs [μmol/(m2·s)] 0.24 0.20 0.18 0.08 0.32 0.04 0.34 0.17
Ci [μmol/mol] 206.29 246.36 246.48 171.53 324.32 25.69 0.10 0.28
Tr [μmol/(m2·s)] 4.95 3.33 3.43 1.66 5.26 0.88 0.05 -0.71
SPAD 53.05 43.50 49.53 39.98 58.52 2.75 -0.32 0.96

图1

光合相关性状正态分布"

表2

F2:3家系群体光合性状的相关性分析"

性状Trait Pn Gs Ci Tr
Gs 0.685**
Ci -0.582** 0.076
Tr 0.546** 0.814** -0.041
SPAD 0.127 0.004 -0.142* 0.000

表3

F2:3家系群体光合相关性状的QTL定位分析"

QTL 连锁群/染色体
Linkage group/Chromosome
位置(cM)
Position
左标记
Left marker
右标记
Right marker
LOD 加性效应
Additive effect
显性效应
Dominant effect
贡献率(%)
Contribution rate
qPn-1-1 LG1 44 STV031 SWU20241 2.06 2.74 1.50 8.17
qPn-1-2 LG1 98 SWU16417 BNL0830 2.12 2.81 -1.72 17.30
qPn-2-1 D3 22 SWU12703 SWU12406 3.20 -2.75 -0.09 22.87
qGs-1-1 LG1 45 STV031 SWU20241 2.23 0.04 0.00 20.55
qGs-1-2 LG1 140 SWU11499 SWU11689 2.06 -0.04 -0.04 17.11
qCi-4-1 D7 0 SWU10641 SWU10568 2.19 -15.39 -21.56 31.89
qTr-1-1 LG1 1 GL607 GL222 2.14 -0.11 1.30 3.31
qSPAD-1-1 LG1 1 GL607 GL222 3.16 0.73 -3.92 10.98
qSPAD-1-2 LG1 27 GL222 STV031 2.26 2.44 0.82 10.97
qSPAD-1-3 LG1 50 SWU20241 SWU11125 2.53 -0.38 2.98 5.90

图2

(冀优861×新陆早25号)遗传连锁图谱及光合相关性状的QTLs"

[1] 许晓明, 戴新宾, 陆巍 , 等. 细胞核、细胞质基因与光合作用的关系. 生物学通报, 1999,34(10):5-6.
[2] 耿小红, 武艳芍, 杨林 . 小麦ITMI重组自交系群体的叶片叶绿素含量. 四川农业大学学报, 2017,35(2):139-143.
[3] 刘胜男, 甘剑锋, 张海萍 , 等. 小麦RILs群体叶绿素含量和千粒重相关分析及QTL定位. 安徽农业大学学报, 2013,40(4):570-574.
[4] 余婷婷, 刘朝显, 梅秀鹏 , 等. 玉米光合性状的相关性及QTL分析. 西南大学学报(自然科学版), 2015,37(9):1-10.
[5] 胡茂龙, 王春明, 杨权海 , 等. 水稻光合功能相关性状QTL分析. 遗传学报, 2005,32(8):818-824.
[6] 刘进, 王嘉宇, 姜树昆 , 等. 水稻叶绿素含量动态QTL分析. 植物生理学报, 2012,48(6):577-583.
[7] 李伟, 潘校成, 于洪潇 , 等. 大豆叶绿素含量QTL定位及候选基因预测. 基因组学与应用生物学, 2016,35(7):1793-1799.
[8] 印志同, 宋海娜, 孟凡凡 , 等. 大豆光合气体交换参数的QTL分析. 作物学报, 2010,36(1):92-100.
doi: 10.3724/SP.J.1006.2010.00092
[9] 戎福喜, 汤丽魁, 唐媛媛 , 等. 海陆渐渗系棉花吐絮期叶绿素含量、荧光参数及相关性状的QTL定位分析. 棉花学报, 2015,27(5):417-426.
[10] 郑巨龙, 龚照龙, 王俊铎 , 等. 新疆陆地棉遗传连锁图谱构建及叶绿素含量和光合速率的QTL定位. 新疆农业科学, 2014,51(9):1577-1582.
[11] 宋美珍 . 短季棉早熟不早衰生化遗传机制及QTL定位. 北京:中国农业科学院, 2006.
[12] Saranga Y, Menz M, Jiang C X , et al. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions. Genome Research, 2001,11:1988-1995.
doi: 10.1101/gr.157201
[13] 秦鸿德, 张天真 . 棉花叶绿素含量和光合速率的QTL定位. 棉花学报, 2008,20(5):394-398.
doi: 1002-7807(2008)05-0394-05
[14] 王鹏, 张天真 . 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础. 作物学报, 2012,38(6):947-953.
doi: 10.3724/SP.J.1006.2012.00947
[15] Song X L, Guo W Z, Han Z G , et al. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. Journal of Integrative Plant Biology, 2005,47(11) : 1382-1390.
doi: 10.1111/jipb.2005.47.issue-11
[16] Song X L, Zhang T Z . Molecular mapping of quantitative trait loci controlling chlorophyll content at different developmental stages in tetraploid cotton. Plant Breed, 2010,129:533-540.
[17] 张建 . 陆地棉遗传图谱标记加密与衣分、光合性状的QTL定位. 重庆:西南大学, 2012.
[18] 张建, 刘大军, 林刚 , 等. 陆地棉叶绿素质量分数QTL定位. 西南大学学报(自然科学版), 2011,3(4):1-4.
[19] Parerson A H, Brubaker C L, Wendel J F . A rapid method for extraction of cotton (Gossypium spp) genomic DNA suitable for RFLP and PCR analysis. Plant Molecular Biology Reporter, 1993,11(2):122-127.
doi: 10.1007/BF02670470
[20] 张军, 武耀廷, 郭旺真 , 等. 棉花微卫星标记的PAGE/银染快速检测. 棉花学报, 2000,12(5):267-269.
[21] Zhang T Z, Qian N, Zhu X F , et al. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. Plos One, 2013,8(2):e57220.
doi: 10.1371/journal.pone.0057220
[22] Jamshed M, Jia F, Gong J W , et al. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population. BMC Genomics, 2016,17:197.
doi: 10.1186/s12864-016-2560-2
[23] Liang Z, Lü Y D, Cai C P , et al. Toward allotraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012,13:539.
doi: 10.1186/1471-2164-13-539
[24] Stuber C W, Lincoln S E, Wolff D W , et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genome, 2006,49(5):545-555.
doi: 10.1139/g06-002
[25] 陈祖海, 刘金兰, 聂以春 . 陆地棉族系种质系与陆地棉品种间的杂种优势利用研究. 棉花学报, 1994,6(3):151-154.
[26] Bhatt J G , Rao M R K. Heterosis in growth and photosynthetic rates in hybrids of cotton. Euphytica, 1980,30:129-133.
[27] Li F G, Fan G Y, Lu C R , et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1). Nature Biotechnology, 2015,33(5):524-530.
doi: 10.1038/nbt.3208
[28] Zhang T Z, Hu Y, Jiang W K , et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015,33(5):531-537.
doi: 10.1038/nbt.3207
[1] 张文,逯涛,叶玉霞,刘铨义,冯杨. 新疆奎屯棉花脱叶催熟剂的混用效果研究[J]. 作物杂志, 2018, (3): 103–107
[2] 刘丽华,苑少华,冯树英,庞斌双,李宏博,刘