作物杂志,2018, 第6期: 10–16 doi: 10.16035/j.issn.1001-7283.2018.06.002

• 专题综述 • 上一篇    下一篇

马铃薯重要性状QTL定位及3个抗病性状分子标记辅助选育

王伟伟,王洪洋,刘晶,梁静思,李灿辉,唐唯   

  1. 云南师范大学马铃薯科学研究院,650500,云南昆明
  • 收稿日期:2018-05-27 修回日期:2018-08-19 出版日期:2018-12-15 发布日期:2018-12-06
  • 作者简介:王伟伟,硕士研究生,研究方向为马铃薯对晚疫病的抗性机制
  • 基金资助:
    国家自然科学基金(31660503);云南省应用基础研究计划青年项目(2015FD015);全国大学生创新创业计划项目(201710681007)

Quantitative Trait Loci (QTL) Mapping and Three Resistance Traits Linkage Markers Selection in Potatoes

Wang Weiwei,Wang Hongyang,Liu Jing,Liang Jingsi,Li Canhui,Tang Wei   

  1. Joint Academy of Potato Science, Yunnan Normal University, Kunming 650500, Yunnan, China
  • Received:2018-05-27 Revised:2018-08-19 Online:2018-12-15 Published:2018-12-06

摘要:

马铃薯是我国主要粮食作物之一,马铃薯分子育种研究具有重要意义。在二倍体马铃薯中,重要性状控制基因的QTL定位及克隆已经有大量报道。近年,随着同源四倍体分析软件的开发,四倍体马铃薯的遗传图谱构建和QTL定位也取得了突破性进展。分子标记是马铃薯育种的重要辅助手段,可快速准确筛选出多个优良性状。对马铃薯重要农艺性状的QTL定位和克隆,以及3个抗病性状分子标记辅助选育的研究进展进行概述,为加快马铃薯分子育种研究提供参考和实践依据。

关键词: 马铃薯, QTL, 分子标记, 育种

Abstract:

Potato is one of the main food crops in China, and research on potato molecular breeding research is of great significance. In the diploid potato, QTL mapping and cloning of important genes has been reported extensively; The development of tetraploid linked analysis software, genetic map construction in tetraploid potato and QTL mapping have also made breakthrough progress in recent years. Meanwhile, molecular markers are an important supplement method for potato breeding and it can quickly and accurately screen out multiple good traits. In this paper, the progress of the QTL mapping, cloning of important agronomic traits in potato and 3 resistance traits linkage markers breeding were summarized, to provid a reference and practical basis for accelerating potato molecular breeding.

Key words: Potato, QTL, Molecular marker, Breeding

表1

马铃薯主效抗晚疫病基因连锁标记"

基因
Gene
染色体
Chromosome
来源Origin 标记类型
Marker type
RB[37] 8 S. tuberosum×S. bulbocastanum PCR
Rpi-smiral[39] 11 S. tuberosum PCR
R1[40] 5 S. tuberosum AFLP
R2[41] 4 S. tuberosum PCR
R2[42] 4 S. tuberosum AFLP
R3[35] 11 S. tuberosum RFLP
R6, R7[36] 11 S. tuberosum RFLP
Rpi-ber[43] 10 S. berthaultii ESTs
R11[38] 11 S. tuberosum PCR
Rpi-blb1[44] 8 S. bulbocastanum PCR

表2

马铃薯抗病毒病基因连锁标记"

病毒Virus 抗性基因Resistance gene 来源Origin 染色体Chromosome 标记Mark
PVY Ryadg[48] S. andigena 11 RYSC3/SCAR
PVY Ryadg[48] S. andigena 11 RYSC4/SCAR
PVY Ryadg[49] S. andigena 11 ADG2/CAPs
PVY Ryadg[50] S. andigena 11 PYSC3/PCR based
PVY Rysto[51] S. stoloniferum 12 YES3-3A/STS
PVY Rysto[51] S. stoloniferum 12 YES3-3B/STS
PVY Rysto[51] S. stoloniferum 12 SCARYSTO4/PCR based
PVY Ry-fsto[52] S. stoloniferum 12 GP122718/CAPs
PVY Ry-fsto[53] S. stoloniferum 12 GP122564/CAPs
PVY Rychc[41] S. chacoense 9 Ry186/STS
PVY Rychc[54] S. chacoense 9 38-530/RAPD
PVY Nytbr (HR)[55] S. tuberosum 4 TG506/ RFLP
PVY Ny-1[56] S. tuberosum 9 Sldl1/CAPs
PVY Ny-1[57] S. tuberosum 9 SC8951139/PCR based
PVY Ny-2 (HR)[57] S. tuberosum 11 B11.6/CAPs
PLRV PLRV.1[58] S. chacoense 11 Nl271164/SCAR
PLRV PLRV.2[58] S. chacoense 4 GP76/SCAR
PLRV PLRV.3[58] S. chacoense 5 HM4-26/SCAR
PLRV PLRV.4[59] S. andigena 11 UB864600/SCAR
PLRV Rlretb[60] S. tuberosum 4、9 DMB32-11/CAPs
PLRV Rlretb[60] S. tuberosum 4、9 1367-8a/CAPs
PLRV Rlretb[60] S. tuberosum 4、9 C2-Atlg42990/CAPs
PLRV Rladg[61] S. andigena 5 E35M48.192/AFLP
PLRV Rladg[62] S. andigena 5 RGASC850/SCAR
PVA Naadg (HR)[63] S. andigena 11 GP21/AFLP
PVS Ns (HR)[53] S. andigena 8 SC811-260/CAPs
PVS Ns[64] S. tuberosum 8 CP16/CAPs
PVM Rm[65] S. megistacrolobum 11 GP283-320/CAPs
PVM Rm[65] S. megistacrolobum 11 GP250-510/CAPs
PVM Gm[65] S. gourlayi 9 SC878885/SCAR
PVX Rx[66] S. tuberosum 12 GP34/CAPs
PVX Rx1[67] S. andigena 12 RxSP/STS
PVX Rx1[68] S. andigena 12 CP60/RFLP
PVX Rx2[69] S. acaule 5 GP21/RFLP
PVX Nbtbr (HR)[63] S. tuberosum 5 CT167/RFLP
PVX Nb (HR)[63] S. tuberosum 5 SPUD237/CAPs
PVX Nxphu (HR)[70] S. tuberosum 9 TG424/RELP
[1] Ames M, Spooner D M . DNA from herbarium specimens settles a controversy about origins of the European potato. American Journal of Botany, 2008,95(2):252-257.
doi: 10.3732/ajb.95.2.252 pmid: 21632349
[2] 谷茂, 信乃俭 . 我国栽培马铃薯最早引进时间的辨析. 中国农史, 1999(3):80-85.
[3] Graham T, Guy H, Enrique C , et al. Varietal change in potatoes in developing countries and the contribution of the International Potato Center:1972-2007. International Potato Center (CIP), Social Sciences Working Paper, 2008.
[4] Xu X, Pan S, Cheng S , et al. Genome sequence and analysis of the tuber crop potato. Nature, 2011,475(7355):189-195.
doi: 10.1038/nature10158 pmid: 21743474
[5] Meyer R C, Milbourne D, Hackett C A , et al. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Molecular and General Genetics, 1998,259(2):150-160.
doi: 10.1007/s004380050800 pmid: 9747706
[6] 时启冬 . 四倍体马铃薯SSR遗传图谱的构建及若干性状的QTL定位分析. 哈尔滨:东北农业大学, 2014.
[7] Luo Z W, Hackett C A, Bradshaw J E , et al. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001,157(3):1369-1385.
doi: 10.1089/109065701750168806 pmid: 11238421
[8] Hackett C A, Luo Z W . Tetraploidmap:construction of a linkage map in autotetraploid species. Journal of Heredity, 2003,94(4):358-359.
doi: 10.1093/jhered/esg066 pmid: 12920109
[9] Bourke P M, Voorrips R E, Visser R G , et al. The double-reduction landscape in tetraploid potato as revealed by a high-density linkage map. Genetics, 2015,201(3):853-863.
doi: 10.1534/genetics.115.181008
[10] Hackett C A, Milne I, Bradshaw J E , et al. Tetraploid Map for Windows:linkage map construction and QTL mapping in autotetraploid species. Journal of Heredity, 2007,98(7):727-729.
doi: 10.1093/jhered/esm086 pmid: 17965198
[11] 周俊 . 马铃薯(Solanum tuberosum L.)试管块茎形成的QTL定位及遗传分析. 武汉:华中农业大学, 2014.
[12] Massa A N, Manrique-Carpintero N C, Coombs J J ,et al. Genetic linkage mapping of economically important traits in cultivated tetraploid potato (Solanum tuberosum L.). G3 (Bethesda), 2015,5(11):2357-2364.
doi: 10.1534/g3.115.019646 pmid: 4632055
[13] 崔阔澍, 于肖夏, 于卓 , 等. 四倍体彩色马铃薯花青素含量及产量性状的QTL定位. 草业学报, 2016,25(5):116-124.
doi: 10.11686/cyxb2015369
[14] 刘龙超, 周云, 贺苗苗 , 等. 四倍体马铃薯SSR遗传图谱的构建及晚疫病抗性QTL初步定位. 植物病理学报, 2016,46(1):84-90.
doi: 10.13926/j.cnki.apps.2016.01.010
[15] Felcher K J, Coombs J J, Massa A N , et al. Integration of two diploid potato linkage maps with the potato genome sequence. PLoS ONE, 2012,7(4):e36347.
doi: 10.1371/journal.pone.0036347 pmid: 22558443
[16] Bonierbale M W, Plaisted R L, Tanksley S D . RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988,120(4):1095-1103.
pmid: 17246486
[17] Gebhardt C, Ritter E, Debener T , et al. RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical & Applied Genetics, 1989,78(1):65-75.
doi: 10.1007/BF00299755 pmid: 24227032
[18] Van Eck H J, Van der Voort J R, Draaistra J , et al. The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Molecular Breeding, 1995,1(4):397-410.
doi: 10.1007/BF01248417
[19] 金黎平, 刘杰, 方智远 . 二倍体马铃薯分子连锁图谱的构建. 园艺学报, 2007,4(2):397-402.
doi: 10.3321/j.issn:0513-353X.2007.02.025
[20] Visker M, Keizer L, Eck H V , et al. Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type?. Theoretical & Applied Genetics, 2003,106(2):317-325.
doi: 10.1007/s00122-002-1021-2 pmid: 12582858
[21] Danan S, Chauvin J E, Caromel B , et al. Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. Theoretical & Applied Genetics, 2009,119(4):705-719.
doi: 10.1007/s00122-009-1081-7 pmid: 19533081
[22] 单友蛟, 刘杰, 卞春松 , 等. 马铃薯SSR遗传连锁图谱构建及3个重要农艺性状QTLs定位. 中国蔬菜, 2010,1(18):10-14.
[23] Mihovilovich E, Munive S, Bonierbale M . Influence of day-length and isolates of Phytophthora infestans on field resistance to late blight of potato. Theoretical & Applied Genetics, 2010,120(6):1265-1278.
doi: 10.1007/s00122-009-1254-4 pmid: 20063145
[24] 李竟才 . 二倍体马铃薯遗传图谱构建及晚疫病抗性QTL定位. 武汉:华中农业大学, 2012.
doi: 10.7666/d.Y2162708
[25] 李梦台 . 二倍体马铃薯遗传图谱构建及薯形QTL分析. 武汉:华中农业大学, 2015.
doi: 10.7666/d.Y2803558
[26] Schäfer-Pregl R, Ritter E, Hesselbach J , et al. Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theoretical & Applied Genetics, 1998,97(5/6):834-846.
doi: 10.1007/s001220050963
[27] Jung C S, Griffiths H M, De Jong D M , et al. The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theoretical & Applied Genetics, 2005,110(2):269-275.
doi: 10.1007/s00122-005-1987-7 pmid: 15565378
[28] De Jong W S, Eannetta N T, De Jong D M , et al. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theoretical & Applied Genetics, 2004,108(3):423-432.
doi: 10.1007/s00122-003-1455-1 pmid: 14523517
[29] 肖继坪, 王琼, 郭华春 . 彩色马铃薯二氢黄酮醇4-还原酶(DFR)基因的克隆及生物信息学分析. 分子植物育种, 2011,9(6):728-735.
[30] 肖继坪, 李俊, 郭华春 . 彩色马铃薯类黄酮-3-O-葡萄糖基转移酶基因(3GT)的生物信息学和表达分析. 分子植物育种, 2015,13(5):1017-1026.
[31] 杨艳丽 . 云南马铃薯产业技术与经济研究. 北京: 科学出版社, 2016.
[32] Ramakrishnan A P, Ritland C E, Blas Sevillano R H , et al. Review of potato molecular markers to enhance trait selection. American Journal of Potato Research, 2015,92(4):455-472.
doi: 10.1007/s12230-015-9455-7
[33] Fry W . Phytophthora infestans:the plant (and R gene) destroyer. Molecular Plant Pathology, 2008,9(3):385-402.
doi: 10.1111/j.1364-3703.2007.00465.x pmid: 18705878
[34] Flor H H . Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9(1):275-296.
doi: 10.1146/annurev.py.09.090171.001423
[35] EI-Kharbotly A, Leonards-Schippers C, Huigen D J , et al. Segregation analysis and RFLP mapping of the R1 and R3 alleles conferring race-specific resistance to Phytophthora infestans in progeny of dihaploid potato parents. Molecular and General Genetics, 1994,242(6):749-754.
doi: 10.1007/BF00283432 pmid: 7908718
[36] EI-Kharbotly A, Jacobs J M E, te Hekkert B T , et al. Localization of Ds-transposon containing T-DNA inserts in the diploid transgenic potato:linkage to the R1 resistance gene against Phytophthora infestans (Mont.) de Bary. Genome, 1996,39(2):249-257.
doi: 10.1139/g96-034
[37] Colton L M, Groza H I, Wielgus S M , et al. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene derived from a wild potato species. Crop Science, 2006,46(2):589-594.
doi: 10.2135/cropsci2005.0112
[38] 徐建飞, 黄三文, 金黎平 , 等. 马铃薯晚疫病抗性基因R11的遗传定位. 作物学报, 2009,35(6):992-997.
doi: 10.3724/SP.J.1006.2009.00992
[39] Tomczyńska I, Stefańczyk E, Chmielarz M , et al. A locus conferring effective late blight resistance in potato cultivar Sárpo Mira maps to chromosome Ⅺ. Theoretical & Applied Genetics, 2014,127(3):647-657.
doi: 10.1007/s00122-013-2248-9 pmid: 3931936
[40] Kuhl J C, Bradeen J M, Kole C. Genetics,Genomics and Breeding of Sunflower. Boca Raton: CRC Press,USA, 2010: 111-113.
[41] Mori K, Sakamoto Y, Mukojima N , et al. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica, 2011,180(3):347-355.
doi: 10.1007/s10681-011-0381-6
[42] Li X, van Eck H J, Rouppe J , et al. Autotetraploids and genetic mapping using common AFLP markers:the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theoretical & Applied Genetics, 1998,96(8):1121-1128.
doi: 10.1007/s001220050847
[43] Rauscher G M, Smart C D, Simko I M , et al. Characterization and mapping of Rpi-ber,a novel potato late blight resistance gene from Solanum berthaultii. Theoretical & Applied Genetics, 2006,112(4):674-687.
doi: 10.1007/s00122-005-0171-4 pmid: 16402191
[44] Wang M, Allefs S, van den Berg R G , et al. Allele mining in Solanum:conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical & Applied Genetics, 2008,116(7):933-943.
doi: 10.1007/s00122-008-0725-3 pmid: 18274723
[45] Rouppe van der Voort J N A M, Janssen G J W, Overmars H , et al. Development of a PCR-based selection assay for root-knot nematode resistance (Rmc1) by a comparative analysis of the Solanum bulbocastanum and S. tuberosum genome. Euphytica, 1999,106(2):187-195.
doi: 10.1023/A:1003587807399
[46] Zhang L H, Mojtahedi H, Kuang H , et al. Marker-assisted selection of Columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop Science, 2007,47(5):2021-2026.
doi: 10.2135/cropsci2007.01.0003
[47] Brunt A A . The main viruses infecting potato crops// Loebenstein G,Berger P H,Brunt A A,et al. Virus and Virus-Like Diseases of Potatoes and Production of Seed-Potatoes, 2001: 65-67.
[48] Kasai K, Morikawa Y, Sorri V A , et al. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 2000,43(1):1-8.
doi: 10.1139/g99-092 pmid: 10701106
[49] Ottoman R, Hane D, Brown C , et al. Validation and implementation of marker-assisted selection(MAS)for PVY resistance in a tetraploid potato breeding program. American Journal of Potato Research, 2009,86(4):304-314.
doi: 10.1007/s12230-009-9084-0
[50] Lopez-Pardo R, Barandalla L, Ritter E , et al. Validation of molecular markers for pathogen resistance in potato. Plant Breeding, 2013,132:246-251.
doi: 10.1111/pbr.12062
[51] Song Y S, Schwarzfischer A . Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. American Journal of Potato Research, 2008,85(2):392-393.
doi: 10.1007/s12230-008-9012-8
[52] Flis B, Hennig J, Marczewski W , et al. The Ry-fsto gene from Solanum stoloniferum for extreme resistant to potato virus Y maps to potato chromosome Ⅻ and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Molecular Breeding, 2005,15(1):95-101.
doi: 10.1007/s11032-004-2736-3
[53] Witek K, Strzelczyk-Zyta D, Hennig J , et al. A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-fsto and Ns. Molecular Breeding, 2006,18(3):273-275.
doi: 10.1007/s11032-006-9021-6
[54] Hosaka K, Hosaka Y, Mori M , et al. Detection of a simplex RAPD marker linked to resistance to potato virus Y in a tetraploid potato. American Journal of Potato Research, 2001,78(3):191-196.
doi: 10.1007/BF02883544
[55] Celebi-Toprak F, Slack S A, Jahn M M . A new gene,Nytbr,for hypersensitivity to potato virus Y from Solanum tuberosum maps to chromosome Ⅳ. Theoretical & Applied Genetics, 2002,104(4):669-674.
doi: 10.1007/s001220100749 pmid: 12582672
[56] Szajko K, Strzelczyk-Zyta D, Marczewsli W . Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes:mapping and marker-assisted selection validation for PVY resistance in potato breeding. Molecular Breeding, 2014,34(1):267-271.
doi: 10.1007/s11032-014-0024-4 pmid: 4030098
[57] Szajko K, Chrzanowska M, Witek K , et al. The novel gene Ny-1 on potato chromosome Ⅸ confers hypersensitive resistance to potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theoretical & Applied Genetics, 2008,116(2):297-303.
[58] Burkhart C R, Christ B J, Haynes K G . Non-additive genetic variance governs resistance to Fusarium dry rot in a diploid hybrid potato population. American Journal of Potato Research, 2007,84(3):199-204.
doi: 10.1007/BF02986269
[59] Marczewski W, Flis B, Syller J , et al. Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theoretical & Applied Genetics, 2004,109(8):1604-1609.
doi: 10.1007/s00122-004-1780-z pmid: 15448896
[60] Kuhl J C, Novy R G, Jonathan L W , et al. Development of molecular markers closely linked to the potato leafroll virus resistance gene,Rlretb,for use in marker-assisted selection. American Journal of Potato Research, 2016,93(3):203-212.
doi: 10.1007/s12230-016-9496-6
[61] Velásquez A C, Mihovilvich E, Bonierbale M . Genetic characterization and mapping of major gene resistance to potato leafroll virus in Solanum tuberosum ssp. andigena. Theoretical & Applied Genetics, 2007,114(6):1051-1058.
doi: 10.1007/s00122-006-0498-5 pmid: 17394033
[62] Mihovilovich E, Aponte M, Lindqvist-Kreuze H , et al. An RGA-derived SCAR marker linked to PLRV resistance from Solanum tuberosum ssp. andigena. Plant Molecular Biology Reporter, 2014,32(1):117-128.
doi: 10.1007/s11105-013-0629-5
[63] Jong W D, Forsyth A, Leister D , et al. A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theoretical & Applied Genetics, 1997,95(1/2):246-252.
doi: 10.1007/s001220050555
[64] Marczewski W, Hennig J, Gebhardt C . The potato virus S resistance gene Ns maps to potato chromosome Ⅷ. Theoretical & Applied Genetics, 2002,105(4):564-567.
doi: 10.1007/s00122-002-0976-3 pmid: 12582505
[65] Marczewski W, Strzelczyk-Żyta D, Hennig J , et al. Potato chromosomes Ⅸ and Ⅺ carry genes for resistance to potato virus M. Theoretical & Applied Genetics, 2006,112(7):1232-1238.
doi: 10.1007/s00122-006-0224-3 pmid: 16453130
[66] Bebdahmane A, Kanyuka K, Baulcombe D C . High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theoretical & Applied Genetics, 1997,95(1/2):153-162.
doi: 10.1007/s001220050543
[67] Wastie R L, Bradshaw J E , Mackay. Inheritance of resistance to fungal diseases of tubers. Wallingford:CAB International, 1994.
[68] Gebhardt C, Bellin D, Henselewski H , et al. Marker-assisted combination of major genes for pathogen resistance in potato. Theoretical & Applied Genetics, 2006,112(8):1458-1464.
doi: 10.1007/s00122-006-0248-8 pmid: 16538512
[69] Ritter E, Debener T, Barone A , et al. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular and General Genetics, 1991,227(1):81-85.
doi: 10.1007/BF00260710 pmid: 1675423
[70] Tommiska J T, Watanabe N K, Valkonen T J P ,et al. Mapping of the gene Nxphu that controls hypersensitive resistance to potato virus X in Solanum phureja IVP35. Theoretical & Applied Genetics, 1998,96(6):840-843.
doi: 10.1007/s001220050810
[71] Lossl A, Adler N, Horn R , et al. Chondriome-type characterization of potato:Mt α,β,γ,ε and novel plastid-mitochondrial configurations in somatic hybrids. Theoretical & Applied Genetics, 1999,99(1/2):1-10.
doi: 10.1007/s001220051202
[72] Sanetomo R, Hosaka K . A maternally inherited DNA marker,descended from Solanum demissum (2n=6x=72) to S. tuberosum (2n=4x=48). Breeding Science, 2011,61(4):426-434.
doi: 10.1270/jsbbs.61.426 pmid: 3406774
[73] Powell W, Baird E, Duncan N , et al. Chloroplast DNA variability in old and recently introduced potato cultivars. Annals of Applied Biology, 1993,123(2):403-410.
doi: 10.1111/j.1744-7348.1993.tb04102.x
[74] Hosaka K, Sanetomo R . Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theoretical & Applied Genetics, 2012,125(6):1237-1251.
doi: 10.1007/s00122-012-1909-4 pmid: 22696007
[75] Provan J, Powell W, Dewar H , et al. An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proceedings. Biological Sciences, 1999,266(1419):633-639.
doi: 10.1098/rspb.1999.0683 pmid: 1689813
[76] Sukhotu T, Kamijima O, Hosaka K . Genetic diversity of the Andean tetraploid cultivated potato (Solanum tuberosum L. subsp. andigena Hawkes) evaluated by chloroplast and nuclear DNA markers. Genome, 2005,48(1):55-64.
doi: 10.1139/g04-086
[77] 易靖 . 马铃薯品种资源分子标记检测及其与重要生物学性状的关联分析. 昆明:云南师范大学, 2016.
[1] 唐丽媛,李兴河,张素君,王海涛,刘存敬,张香云,张建宏. 陆地棉光合相关性状的QTL定位分析[J]. 作物杂志, 2018, (5): 85–90
[2] 宿飞飞,张静华,李勇,刘尚武,刘振宇,王绍鹏,万书明,陈曦,高云飞,胡林双,吕典秋. 不同灌溉方式对两个马铃薯品种生理特性和水分利用效率的影响[J]. 作物杂志, 2018, (5): 97–103
[3] 柴莹,徐永清,付瑶,李秀钰,贺付蒙,韩英琦,冯哲,李凤兰. 马铃薯干腐病病原镰孢菌体内产细胞壁降解酶特性研究[J]. 作物杂志, 2018, (4): 154–160
[4] 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 8–12
[5] 张晓勇,杨友联,李树江,熊荣川,向红. 外源激素对低温胁迫下脱毒马铃薯扦插苗早衰的影响[J]. 作物杂志, 2018, (4): 95–101
[6] 田荟遥,蒋继志,李成斌,申芬,侯宁. 中国东北地区马铃薯致病疫霉遗传多样性分析[J]. 作物杂志, 2018, (3): 168–173
[7] 宋江春,李拴柱,王建玉,张秀阁,朱雪峰,乔建礼,向臻. 我国高油花生育种研究进展[J]. 作物杂志, 2018, (3): 25–31
[8] 王君婵,高致富,李东升,朱冬梅,吴宏亚. 农业信息技术在小麦育种中的应用研究[J]. 作物杂志, 2018, (3): 37–43
[9] 梁淑敏,王颖,潘哲超,张磊,徐宁生,李燕山,杨琼芬,李先平,白建明,姚春光,卢丽丽,隋启君. 不同栽培模式的土壤水热效应对马铃薯产量及结薯规律的影响[J]. 作物杂志, 2018, (3): 90–96
[10] 叶怡然,达布希拉图,沙本才,王文祥,叶宏达,耿世娴,成京晋,海梅荣. 不同肥料对冬马铃薯光合特性的影响[J]. 作物杂志, 2018, (3): 135–140
[11] 石晓华,杨海鹰,康文钦,秦永林,樊明寿,贾立国. 不同施氮量对马铃薯-小麦轮作体系产量及土壤氮素平衡的影响[J]. 作物杂志, 2018, (2): 108–116
[12] 张帅,庞玉辉,王征宏,王黎明,陈春燕,曾占奎,王春平. 小麦种质资源农艺性状变异及其遗传多样性分析[J]. 作物杂志, 2018, (2): 44–51
[13] 崔勇. 马铃薯连作造成的影响及连作障碍防控技术[J]. 作物杂志, 2018, (2): 87–92
[14] 陆姗姗,吴承来,李岩,张春庆. 玉米自交系性状保持和纯化的分子依据[J]. 作物杂志, 2018, (1): 41–48
[15] 王洁,曾波,雷财林,赵志超,王久林,程治军. 北方国家水稻区域试验近15年参试品种分析[J]. 作物杂志, 2018, (1): 71–76
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .