作物杂志,2019, 第2期: 8–14 doi: 10.16035/j.issn.1001-7283.2019.02.002

• 专题综述 • 上一篇    下一篇

转基因作物的生物安全:基因漂移及其潜在生态风险的研究和管控

郭利磊1,2,朱家林3,孙世贤2,闫硕1,2   

  1. 1 中国农业大学植物保护学院,100193,北京
    2 全国农业技术推广服务中心,100125,北京
    3 中华人民共和国北京海关,100026,北京
  • 收稿日期:2018-09-06 修回日期:2019-02-18 出版日期:2019-04-15 发布日期:2019-04-12
  • 通讯作者: 闫硕

Biosafety of Transgenic Crop: Research and Constraint of Potential Ecological Risk of Gene Flow

Lilei Guo1,2,Jialin Zhu3,Shixian Sun2,Shuo Yan1,2   

  1. 1 College of Plant Protection, China Agricultural University, Beijing 100193, China
    2 National Agricultural Technology Extension and Service Center, Beijing 100125, China
    3 Beijing Customs District P. R. China, Beijing 100026, China
  • Received:2018-09-06 Revised:2019-02-18 Online:2019-04-15 Published:2019-04-12
  • Contact: Shuo Yan

摘要:

转基因作物品种在商业化推广的20多年间发展迅猛,在保障食品供应、拓展农业功能、缓解资源约束、保护生态环境等方面做出了卓越贡献。在创造巨大经济、环境和社会效益的同时,转基因作物的生物安全问题也引起了全球的广泛关注和讨论。其中,难以准确预见的外源基因通过基因漂移逃逸至非转基因作物及其野生近缘种,进而导致潜在的生态风险就是国内外学者的研究热点。围绕基因漂移的机制及其生态风险、风险评估、控制措施等问题进行介绍和讨论,并展望转基因生物技术的发展趋势。

关键词: 转基因作物, 基因漂移, 生态安全, 安全性评价, 物理隔离

Abstract:

Genetically modified (GM) crop is developing fast in the past 20 years on a large-scale commercialization and extension, which makes a great contribution to the food supply, extension of agriculture function, alleviation of resources constraints and protection of ecological environment. Global concerns and debates have been raised by the biosafety of GM crop while great economic, environmental and social benefits are brought by their planting. Transgene can escape to non-GM crops and wild relatives via gene flow resulting in ecological risk, which is mostly studied by domestic and foreign researchers. This paper mainly compassed the introduction and discussion about the mechanism, ecological risk, risk assessment, and the control measures of gene flow, furthermore, the future utilization of GM technology was proposed.

Key words: Transgenic crop, Gene flow, Ecological safety, Safety assessment, Physical isolation

[1] Lavigne C, Klein E K, Vallée P , et al. A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theoretical and Applied Genetics, 1998,96(9):886-896.
[2] Nap J P, Metz P L J,Escaler M ,et al. The release of genetically modified crops into environment:Part I overview of current status and regulations. The Plant Journal, 2003,33(1):1-18.
doi: 10.1046/j.0960-7412.2003.01602.x
[3] 李瑞峰, 王莹, 王宇 , 等. 转基因作物及其生物安全性. 东北农业大学学报, 2007,38(3):405-410.
doi: 10.3969/j.issn.1005-9369.2007.03.027
[4] O’Callaghan M, Glare T R, Burgess E P J , et al. Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology, 2005,50(4):271-292.
doi: 10.1146/annurev.ento.50.071803.130352 pmid: 15355241
[5] 朱彦涛, 徐虹, 郭蔼光 , 等. 植物转基因技术与当代社会发展. 中国农学通报, 2008,24(4):509-522.
[6] Hermannsson J, Kristjansdottir T A, Stefansson T S , et al. Measuring gene flow in barley fields under Icelandic sub-arctic conditions using closed-flowering varieties. Icelandic Agricultural Sciences, 2010,23(64):51-59.
doi: 10.1071/CP08123_ER
[7] James C. 2015年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2016,36(4):1-11.
doi: 10.13523/j.cb.20160401
[8] James C. 2017年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2018,38(6):1-8.
[9] 李静, 李红芳, 张换样 , 等. 全球转基因作物的产业化发展. 山西农业科学, 2009,37(1):3-8.
doi: 10.3969/j.issn.1002-2481.2009.01.001
[10] James C. 2014年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2015,35(1):1-14.
[11] 卢宝荣, 张文驹, 李博 . 转基因的逃逸及生态风险. 应用生态学报, 2003,14(6):989-994.
[12] 卢宝荣, 夏辉 . 转基因植物的环境生物安全:转基因逃逸及其潜在生态风险的研究和评价. 生命科学, 2011,23(2):186-194.
[13] 韦祖生, 田益农, 马崇熙 . 作物基因漂移研究综述. 现代农业科技, 2017(13):13-15.
doi: 10.3969/j.issn.1007-5739.2011.13.002
[14] Bertolla F, Simonet P . Horizontal gene transfers in the environment:natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Research in Microbiology, 1999,150(6):375-384.
doi: 10.1016/S0923-2508(99)80072-2 pmid: 10466405
[15] Ellstrand N C, Prentiee H C, Hancock J F . Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 1999,30(1):539-563.
doi: 10.1146/annurev.ecolsys.30.1.539
[16] Ellstrand N C . Current knowledge of gene flow in plants:implications for transgene flow. Philosophical Transactions of the Royal Society B:Biological Science, 2003,358(1434):1163-1170.
doi: 10.1098/rstb.2003.1299 pmid: 12831483
[17] Ochman H, Lawrenee J G, Groisman E A . Lateral gene transfer and the nature of bacterial innovation. Nature, 2000,405(6784):299-304.
[18] Gogarten J P, Townsend J P . Horizontal gene transfer,genome innovation and evolution. Nature Reviews Microbiology, 2005,3(9):679-687.
doi: 10.1038/nrmicro1204 pmid: 16138096
[19] Pasquet R S, Peltier A, Hufford M B , et al. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(36):13456-13461.
doi: 10.1073/pnas.0806040105 pmid: 18768793
[20] Marceau A, Loubet B, Andrieu B , et al. Modeling diurnal and seasonal patterns of maize pollen emission in relation to meteorological factors. Agricultural and Forest Meteorology, 2011,151(1):11-21.
doi: 10.1016/j.agrformet.2010.08.012
[21] Zhang K, Li Y, Lian L . Pollen-mediated transgene flow in maize grown in the Huang-huai-hai region in China. Journal of Agricultural Science, 2011,149(2):205-216.
doi: 10.1017/S0021859610000602
[22] 贺娟, 朱威龙, 朱家林 , 等. 风、蜜蜂因素对转Cry1Ac基因棉花花粉介导的基因漂移的影响. 棉花学报, 2013,25(5):453-458.
doi: 10.3969/j.issn.1002-7807.2013.05.012
[23] 朱家林, 贺娟, 牛建群 , 等. 风向因素对转基因抗虫棉花基因漂移效率的影响. 生态学报, 2013,33(21):6803-6812.
doi: 10.5846/stxb201207040932
[24] Yan S, Zhu J L, Zhu W L , et al. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Scientific Reports, 2015,5:15917.
doi: 10.1038/srep15917 pmid: 4630633
[25] 闫硕, 朱家林, 朱威龙 , 等. 风速对转基因棉花基因漂移的影响. 生态学杂志, 2017,36(8):2217-2223.
doi: 10.13292/j.1000-4890.201708.004
[26] Yoshimura Y, Beckie H J, Matsuo K . Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environmental Biosafety Research, 2006,5(2):67-75.
doi: 10.1051/ebr:2006019 pmid: 17328853
[27] Garnier A, Pivard S, Lecomte J . Measuring and modeling anthropogenic secondary seed dispersal along roadverges for feral oilseed rape. Basic and Applied Ecology, 2008,9(5):533-541.
doi: 10.1016/j.baae.2007.08.014
[28] Amsellem L, Noyer J L , Hossaert-McKey M. Evidence for a switch in the reproductive biology of Rubus alceifolius (Rosaceae) towards apomixis,between its native range and its area of introduction. American Journal of Botany, 2001,88(12):2243-2251.
doi: 10.2307/3558386
[29] Cureton A N, Newbury H J, Raybould A F , et al. Genetic structure and gene flow in wild beet populations:the potential influence of habitat on transgene spread and risk assessment. Journal of Applied Ecology, 2006,43(6):1203-1212.
doi: 10.1111/j.1365-2664.2006.01236.x
[30] Chandler S, Dunwell J M . Gene flow,risk assessment and the environmental release of transgenic plants. Critical Reviews in Plant Sciences, 2008,27(1):25-49.
doi: 10.1080/07352680802053916
[31] Lu B R, Yang C . Gene flow from genetically modified rice to its wild relatives:Assessing potential ecological consequences. Biotechnology Advance, 2009,27(6):1083-1091.
doi: 10.1016/j.biotechadv.2009.05.018 pmid: 19463932
[32] Friesen L F, Nelson A G , Van Acker R C. Evidence of contamination of pedigreed canola (Brassica napus) seedlots in western Canada with genetically-engineered herbicide-resistance traits. Agronomy Journal, 2003,95(5):1342-1347.
doi: 10.2134/agronj2003.1342
[33] Andow D A, Zwahlen C . Assessing environmental risks of transgenic plants. Ecology Letters, 2006,9(2):196-214.
doi: 10.1111/j.1461-0248.2005.00846.x
[34] Haxel G R . Rapid displacement of native species by invasive species:effects of hybridization. Critical Care Medicine, 1999,39(4):879-880.
doi: 10.1016/S0006-3207(98)00153-0
[35] Wolf D E, Takebayashi N, Rieseberg L H . Predicting the risk of extinction through hybridization. Conservation Biology, 2001,15(4):1039-1053.
doi: 10.1046/j.1523-1739.2001.0150041039.x
[36] Levin D A, Franciseo-Ortega J, Jansen R K . Hybridization and the extinction of rare plants pecies. Conservation Biology, 1996,10(1):10-16.
doi: 10.1046/j.1523-1739.1996.10010010.x
[37] Gealy D R, Mitten D H, Rutger J N . Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa):implications for weed management. Weed Technology, 2003,17(3):627-645.
doi: 10.1614/WT02-100
[38] Xia H, Lu B R, Su J , et al. Normal expression of insect-resistant transgene in progenies of common wild rice crossed with genetically modified rice:its implication in ecological biosafety assessment. Theoretical and Applied Genetics, 2009,119(4):635-644.
doi: 10.1007/s00122-009-1075-5 pmid: 19504082
[39] Van Deynze A E, Sundstrom F J, Bradford K J . Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Science, 2005,45(4):1565-1570.
doi: 10.2135/cropsci2004.0463
[40] Johnson P G, Larson S R, Anderton A L , et al. Pollen-mediated gene flow from Kentucky bluegrass under cultivated field conditions. Crop Science, 2006,46(5):1990-1997.
doi: 10.2135/cropsci2005.09.0316
[41] Chapman M A, Burke J M . Letting the gene out of the bottle:the population genetics of genetically modified crops. New Phytologist, 2006,170(3):429-443.
doi: 10.1111/j.1469-8137.2006.01710.x pmid: 16626466
[42] Yan S, Zhu W L, Zhang B Y , et al. Pollen-mediated gene flow from transgenic cotton is constrained by physical isolation measures. Scientific Reports, 2018,8:2862.
doi: 10.1038/s41598-018-21312-1
[43] Heuberger S, Ellers-Kirk C, Tabashnik B E , et al. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields. PLoS ONE, 2010,5(11):e14128.
doi: 10.1371/journal.pone.0014128 pmid: 2994710
[44] Scorza R, Kriss A B, Callahan A M , et al. Spatial and temporal assessment of pollen- and seed-mediated gene flow from genetically engineered plum Prunus domestica. PLoS ONE, 2013,8(10):e75291.
doi: 10.1371/journal.pone.0075291 pmid: 3788040
[45] Llewellyn, D, Tyson C, Constable G ,et al. Containment of regulated genetically modified cotton in the field. Agriculture Ecosystems and Environment, 2007,121(4):419-429.
doi: 10.1016/j.agee.2006.11.019
[46] Daniell H, Kumar S, Dufourmantel N . Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in Biotechnology, 2005,23(5):238-245.
doi: 10.1016/j.tibtech.2005.03.008 pmid: 3486632
[47] Grevich J J, Daniell H . Chloroplast genetic engineering:recent advances and future perspectives. Critical Reviews in Plant Sciences, 2005,24(2):83-107.
doi: 10.1080/07352680590935387
[48] Quesada-Vargas T, Ruiz O N, Daniell H . Characterization of heterologous multigene operons in transgenic chloroplasts. Plant Physiology, 2005,138(3):1746-1762.
doi: 10.1104/pp.105.063040 pmid: 15980187
[49] Daniell H, Datta R, Varma S , et al. Containment of herbicide resistance through genetic engineering of chloroplast genome. Nature Biotechnology, 1998,16(4):345-348.
doi: 10.1038/nbt0498-345 pmid: 5522713
[50] Ruf S, Hermann M, Berger I J , et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology, 2001,19(9):870-875.
doi: 10.1038/nbt0901-870 pmid: 11533648
[51] Haygood R A, Ives A R, Andow D A . Population genetics of transgene containment. Ecology Letters, 2004,7(3):213-220.
doi: 10.1111/j.1461-0248.2004.00575.x
[52] Wang T, Li Y, Shi Y , et al. Low frequency transmission of a plastid-encoded trait in setaria italic. Theoretical and Applied Genetics, 2004,108(2):315-320.
[53] Azhagiri A K, Maliga P . Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant Journal for Cell and Molecular Biology, 2007,52(5):817-823.
doi: 10.1111/j.1365-313X.2007.03278.x pmid: 17931353
[54] Ruf S, Karcher D, Bock R . Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(17):6998-7002.
doi: 10.1073/pnas.0700008104 pmid: 17420459
[55] Budar F, Touzet P, De Paepe R . The nucleomitochondrial conflict in cytoplasmic male sterilities revisited. Genetica, 2003,117(1):3-16.
doi: 10.1023/A:1022381016145 pmid: 12656568
[56] Chase C D . Cytoplasmic male sterility:a window to the world of plantmitochon-drial-nuclear interaction. Trends in Genetics, 2007,23(2):81-90.
doi: 10.1016/j.tig.2006.12.004 pmid: 17188396
[57] Weider C, Stamp P, Christov N , et al. Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Science, 2009,49(1):77-84.
doi: 10.2135/cropsci2007.12.0694
[58] Hvarleva T, Hristova M, Bakalova A , et al. CMS lines for evaluation of pollen flow in sunflower relevance for transgene flow mitigation. Biotechnology and Biotechnological Equipment, 2009,23(3):1309-1315.
doi: 10.1080/13102818.2009.10817659
[59] Latha R, Thiyagarajan K, Senthilvel S . Genetics,fertility behaviour and molecular marker analysis of a new TGMS line,TS6,in rice. Plant Breeding, 2004,123(3):235-240.
doi: 10.1111/pbr.2004.123.issue-3
[60] Sawhney V K . Photoperiod-sensitive male sterile mutant in tomato and its potential use in hybrid seed production. Journal of Horticultural Science and Biotechnology, 2004,79(1):138-141.
doi: 10.1080/14620316.2004.11511726
[61] Mlynárová L, Conner A, Nap J P . Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnology Journal, 2006,4(4):445-452.
doi: 10.1111/j.1467-7652.2006.00194.x pmid: 17177809
[62] Gidoni D, Srivastava V, Carmi N . Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cellular and Developmental Biology- Plant, 2008,44(6):457-467.
doi: 10.1007/s11627-008-9140-3
[63] Metz P L J, Jacobsen E, Nap J P , et al. The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa×B. napus hybrids and their successive backcrosses. Theoretical and Applied Genetics, 1997,95(3):442-450.
doi: 10.1007/s001220050581
[64] Turuspekov Y, Honda I, Watanabe Y , et al. An inverted and micro-colinear genomic regions of rice and barley carrying the cly1 gene for cleistogamy. Breeding Science, 2009,59(5):657-663.
doi: 10.1270/jsbbs.59.657
[65] Benitez E R, Khan N A, Matsumura H , et al. Varietal differences and morphology of cleistogamy in soybean. Crop Science, 2010,50(1):185-190.
doi: 10.2134/jeq2006.0562
[66] Diaz A, MacNair M R . The effect of plant size on the expression of cleistogamy in Mimulus nasutus. Functional Ecology, 1998,12(1):92-98.
doi: 10.1046/j.1365-2435.1998.00170.x
[67] Lu B R . Transgene containment by molecular means-is it possible and cost effective? Environmental Biosafety Research, 2003,2(1):3-8.
doi: 10.1051/ebr/2003000 pmid: 15615063
[68] Yoshida G, Itoh J I, Ohmori S , et al. Sperwoman-1-cleistogamy,a hopeful allele for gene containment in GM-rice. Plant Biotechnology Journal, 2007,5(6):835-846.
doi: 10.1111/pbi.2007.5.issue-6
[69] Gressel J . Tandem construct:preventing the rise of superweeds. Trends in Biotechnology, 1999,17(9):361-366.
doi: 10.1016/S0167-7799(99)01340-2 pmid: 10461182
[70] Al-Ahmad H, Galili S, Gressel J . Tandem constructs to mitigate transgene persistence:tobacco as a model. Molecular Ecology, 2004,13(3):697-710.
doi: 10.1046/j.1365-294X.2004.02092.x pmid: 14871372
[71] 姚万军, 吴晗 . 我国应否将主粮转基因技术产业化?——基于一般均衡框架的经济学分析. 南开学报(哲学社会科学版), 2017(5):85-94.
[72] 孙卓婧, 张安红, 叶纪明 . 转基因作物研发现状及展望. 中国农业科技导报, 2018,20(7):11-18.
[73] 中国农村技术开发中心. 依托“七大农作物育种”专项实施,推进基因编辑技术发展和应用. 中国农业科技导报, 2018,20(8):155.
[74] 何晓丹, 陈琦琦, 展进涛 . 欧美等国基因组编辑生物安全管理政策及对中国的启示. 中国科技论坛, 2017(8):183-188.
[1] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9–15
[2] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[3] 焦悦,梁晋刚,翟勇. 转基因作物安全评价研究进展[J]. 作物杂志, 2016, (5): 1–7
[4] 曹永强, 孙石. 回交在转基因作物育种中的应用[J]. 作物杂志, 2014, (1): 9–14
[5] 武小霞, 张彬彬, 王志坤, 等. 转基因作物的生物安全性管理及安全评价[J]. 作物杂志, 2010, (4): 1–4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 马瑞琦,亓振,常旭虹,王德梅,陶志强,杨玉双,冯金凤,孙敏,赵广才. 化控剂对冬小麦植株性状及产量品质的调节效应[J]. 作物杂志, 2018, (1): 133 –140 .
[5] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[6] 李红燕,王永宏,赵如浪,张文杰,明博,谢瑞芝,王克如,李璐璐,高尚,李少昆. 宁夏引/扬黄灌区玉米子粒脱水模型的构建与应用[J]. 作物杂志, 2018, (4): 149 –153 .
[7] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[8] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[9] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[10] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .