作物杂志,2019, 第3期: 126–131 doi: 10.16035/j.issn.1001-7283.2019.03.020

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

基于高光谱遥感的玉米叶片SPAD值估算模型研究

董哲,杨武德,张美俊,朱洪芬,王超   

  1. 山西农业大学旱作农业工程研究所,030801,山西太谷
  • 收稿日期:2018-09-21 修回日期:2019-04-04 出版日期:2019-06-15 发布日期:2019-06-12
  • 通讯作者: 杨武德
  • 作者简介:董哲,硕士研究生,主要从事农业信息技术研究;
  • 基金资助:
    国家自然科学基金(31871571);山西省科技攻关项目(20150311002-4)

Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing

Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao   

  1. Institute of Dry Farming Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2018-09-21 Revised:2019-04-04 Online:2019-06-15 Published:2019-06-12
  • Contact: Wude Yang

摘要:

灌浆期玉米叶片叶绿素含量对玉米光合作用及产量形成具有重要作用。为通过高光谱特征准确、高效估测玉米叶片叶绿素含量,以SPAD值表征叶绿素相对含量,构建了基于光谱特征参数的传统回归模型、基于全谱和光谱特征参数的PLSR模型和BP神经网络模型,并进行了比较分析。结果表明:基于全谱构建的PLSR模型SPAD值拟合效果最好(R 2=0.910,RMSE=2.071),而基于光谱特征参数所建立的PLSR模型拟合效果可达到与全谱PLSR模型相近的水平。但后者的实测值与预测值拟合效果(R 2=0.867,RMSE=2.581,RPD=2.628)优于全谱PLSR模型,且建模时间短,模型复杂程度降低。BP神经网络模型相较于两种PLSR模型预测效果略差,但优于传统回归模型。综合来看,基于光谱特征参数建立的PLSR模型估测效果最好。

关键词: 高光谱, 玉米叶片, SPAD, 偏最小二乘, BP神经网络

Abstract:

The leaf chlorophyll content at the filling stage plays an important role in photosynthesis and yield formation of maize. To estimate the maize leaf chlorophyll content accurately and efficiently, hyperspectral remote sensing was used by taking SPAD value as the relative chlorophyll content. Conventional regression models based on spectral characteristic parameters, PLSR models based on full spectrum and spectral characteristic parameters, and BP neural network model were constructed and compared. The results showed that SPAD value of PLSR model based on full spectrum had the best fitting effect (R 2=0.910, RMSE=2.071). The fitting effect of PLSR model based on spectral characteristic parameters was close to that of PLSR model based on full spectrum. But the measured and predicted values of the latter fitting effect (R 2=0.867, RMSE=2.581, RPD=2.628) was better than that of full spectrum PLSR model, and the PLSR model based on spectral characteristic parameters had short modeling time and tow complexity. The prediction effect of the BP neural network model was worse than the two PLSR models, but better than the conventional regression models based on spectral characteristic parameters. In brief, the estimation effect of PLSR model based on spectral parameters was the best.

Key words: Hyperspectral, Maize leaf, SPAD, Partial least square regression, BP neural network

表1

本试验所用光谱特征参数计算公式"

光谱特征参数Spectral characteristic parameter 定义Definition 来源Source
NDVI NDVI=(R750-R705)/(R750+R705) Gitelson等[11]
GNDVI GNDVI=(R750-R550)/(R750+R550) Gitelson等[11]
RVI RVI=R760/R710 Penuelas等[12]
λr 红光范围内一阶导数光谱最大值对应的波长 Horler等[13]
kλr 红光范围内一阶导数光谱的峰度 姚付启等[14]
sλr 红光范围内一阶导数光谱的偏度 姚付启等[14]

表2

光谱特征参数与玉米叶片SPAD的相关系数(n=80)"

参数Parameter 相关系数
Correlation coefficient
植被指数Vegetation index NDVI 0.843**
GNDVI 0.811**
RVI 0.893**
红边参数The trilateral parameter λr 0.935**
kλr 0.872**
sλr 0.914**

表3

基于光谱特征参数的玉米叶片SPAD值估算模型"

光谱特征参数
Spectral characteristic parameter
最优拟合模型
The optimal fitting equation
建模集Modeling set 验证集Validation set
R2 RMSE R2 RMSE RPD
NDVI y=12.696e2.6521x 0.728 3.686 0.636 4.072 1.500
GNDVI y=10.909e2.7102x 0.672 4.020 0.574 4.366 1.340
RVI y=20.758x0.9129 0.812 3.095 0.716 3.715 1.791
λr y=3E-104x36.805 0.880 3.774 0.854 3.327 2.005
kλr y=640.3e1.7036x 0.784 3.432 0.714 3.657 1.739
sλr y=87.296x2+54.674x+46.509 0.847 2.697 0.804 3.028 2.137

表4

基于PLSR的玉米叶片SPAD估算模型"

模型Model 建模集
Modeling set
验证集
Validation set
R2 RMSE R2 RMSE RPD
PLSR(全谱) 0.910 2.071 0.862 2.600 2.545
PLSR(光谱特征参数) 0.900 2.200 0.867 2.581 2.628

表5

基于BP神经网络的玉米叶片SPAD估算模型"

建模集Modeling set 验证集Validation set
R2 RMSE R2 RMSE RPD
0.904 2.165 0.822 2.861 2.305

表6

不同估算模型预测效果比较"

模型
Model
建模集Modeling set 验证集Validation set
R2 RMSE R2 RMSE RPD
PLSR(光谱特征参数)PLSR (spectral characteristic parameter) 0.900 2.200 0.867 2.581 2.628
PLSR(全谱)PLSR (full spectrum) 0.910 2.071 0.862 2.600 2.545
BP神经网络BP neural network 0.904 2.165 0.822 2.861 2.305
多项式Polynomial (sλr) 0.847 2.697 0.804 3.028 2.137

图1

基于不同估算模型的SPAD实测值与预测值1∶1关系图 a. PLSR(光谱特征参数)、b. PLSR(全谱)、c. BP神经网络、d. 多项式(sλr)"

[1] Curran P J, Windham W R, Gholz H L . Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiology, 1995,15(3):203-206.
doi: 10.1093/treephys/7.1-2-3-4.33 pmid: 14965977
[2] 李哲, 张飞, 陈丽华 , 等. 光谱指数的植物叶片叶绿素含量估算模型. 光谱学与光谱分析, 2018,38(5):1533-1539.
[3] 王晓星 . 夏玉米冠层光谱特征及其生理生态参量的高光谱估算模型. 杨凌:西北农林科技大学, 2015.
[4] 李媛媛, 常庆瑞, 刘秀英 , 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算. 农业工程学报, 2016,32(16):135-142.
[5] 丁希斌, 刘飞, 张初 , 等. 基于高光谱成像技术的油菜叶片SPAD值检测. 光谱学与光谱分析, 2015,35(2):486-491.
[6] Thenkabail P S, Enclona E A, Ashton M S , et al. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 2004,91(3):354-376.
doi: 10.1016/j.rse.2004.03.013
[7] Thenkabail P S, Smith R B, Pauw E D . Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering & Remote Sensing, 2002,68(6):607-621.
[8] Chan C W, Paelinckx D . Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 2008,112(6):2999-3011.
doi: 10.1016/j.rse.2008.02.011
[9] Gitelson A A, Zur Y, Chivkunova O B , et al. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry & Photobiology, 2010,75(3):272-281.
[10] 刘海启, 李召良 . 高光谱植被遥感. 北京: 中国农业科学技术出版社, 2015: 85-86.
[11] Gitelson A, Kaufman Y J, Stark R , et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002,80(1):76-87.
doi: 10.1016/S0034-4257(01)00289-9
[12] Penuelas J, Baret F, Filella I . Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica, 1995,31(2):221-230.
[13] Horler D N H, Barber J, Darch J P , et al. Approaches to detection of geochemical stress in vegetation. Advances in Space Research, 1983,3(2):175-179.
[14] 姚付启, 张振华, 杨润亚 , 等. 基于红边参数的植被叶绿素含量高光谱估算模型. 农业工程学报, 2009,25(S2):123-129.
[15] 马赵扬, 杜昌文, 周健民 . 土壤碳酸钙中红外光声光谱特征及其应用. 光谱学与光谱分析, 2012,32(5):1255-1258.
[16] 陈志强, 王磊, 白由路 , 等. 整个生育期玉米叶片SPAD高光谱预测模型研究. 光谱学与光谱分析, 2013,33(10):2838-2842.
[17] 宋开山, 张柏, 李方 , 等. 高光谱反射率与大豆叶面积及地上鲜生物量的相关分析. 农业工程学报, 2005,21(1):36-40.
[18] 汤旭光, 宋开山, 刘殿伟 , 等. 基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较. 光谱学与光谱分析, 2011,31(2):371-374.
[1] 赵凯男,常旭虹,王德梅,陶志强,杨玉双,马瑞琦,朱英杰,徐哲莉,张保军,赵广才. 立体匀播和施氮量对冬小麦产量构成及旗叶光合性能的影响[J]. 作物杂志, 2019, (1): 103–110
[2] 陈瑛瑛,王徐艺凌,朱宇涵,武威,刘涛,孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[3] 李忠南,王克伟,王越人,邬生辉,李光发. 玉米品种先玉335苗期叶绿素SPAD值的遗传分析[J]. 作物杂志, 2016, (4): 101–101
[4] 李利, 陈俊辉, 樊明寿. 使用叶绿素仪进行马铃薯氮素营养诊断的样本数确定[J]. 作物杂志, 2015, (4): 135–137
[5] 张云丽, 韩宪忠, 王克俭. 基于深度颜色特征的灰度直方图玉米品种识别研究[J]. 作物杂志, 2015, (1): 156–159
[6] 周菲, 王文军, 黄绪堂, 等. 食用向日葵子仁蛋白质含量近红外光谱模型的建立[J]. 作物杂志, 2013, (6): 73–75
[7] 裴宇峰, 栾怀海, 刘春燕, 等. 黑龙江省大豆蛋白质和油分含量与环境因素的相关分析[J]. 作物杂志, 2013, (2): 37–41
[8] 胡炳义, 武安泉. 不同研磨方法对玉米叶片组织可溶性蛋白含量测定的影响[J]. 作物杂志, 2007, (5): 24–25
[9] 周顺利, 谢瑞芝, 蒋海荣, 等. 冠层相对深度指数与玉米不同叶层含水量间的关系研究[J]. 作物杂志, 2005, (5): 13–15
[10] 王晓鸣. 玉米病虫害知识系列讲座(Ⅱ) 玉米生长中后期病虫害鉴别与防治[J]. 作物杂志, 2005, (3): 38–40
[11] 赵敏. 保水剂对玉米某些生理特性的影响[J]. 作物杂志, 2001, (3): 12–13
[12] 赵镭, 程钼毅. 玉米施用氨钾肥肥效与土壤速效磷含量关系的初步研究[J]. 作物杂志, 1987, (1): 30–33,28
Viewed
Full text
433
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 7 0 0 426

  From Others local
  Times 35 398
  Rate 8% 92%

Abstract
272
Just accepted Online first Issue
0 0 272
  From Others local
  Times 40 232
  Rate 15% 85%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 房裕东,韩天富. 作物快速育种技术研究进展[J]. 作物杂志, 2019, (2): 1 –7 .
[2] 张萌,芶久兰,魏全全,陈龙,何佳芳. 不同生物有机肥对贵州高海拔春马铃薯生长及土壤肥力的影响[J]. 作物杂志, 2019, (3): 132 –136 .
[3] 付景,孙宁宁,刘天学,马俊峰,杨豫龙,赵霞,穆心愿,李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响[J]. 作物杂志, 2019, (3): 118 –125 .
[4] 权宝全,吕瑞洲,王贵江,任杰成. 薯块膨大中期不同栽培措施对甘薯生长发育及产量的影响[J]. 作物杂志, 2019, (3): 158 –161 .
[5] 鲁守平,张华,孟昭东,穆春华. 利用分子标记技术对玉米自交系子粒油分的改良研究[J]. 作物杂志, 2019, (3): 24 –28 .
[6] 张自强,王良,白晨,张惠忠,李晓东,付增娟,赵尚敏,鄂圆圆,张辉,张必周. 104份甜菜种质资源主要农艺性状分析[J]. 作物杂志, 2019, (3): 29 –36 .
[7] 马名川,刘龙龙,张丽君,崔林,周建萍. EMS诱变刺荞的形态突变体鉴定与分析[J]. 作物杂志, 2019, (3): 37 –41 .
[8] 范惠玲,白生文,朱雪峰,李振洲,秦明岗,何志军. 油菜及其近缘种种子萌发期耐盐碱性差异[J]. 作物杂志, 2019, (3): 178 –184 .
[9] 叶文斌,何玉鹏,王昱,王瀚,赵庆芳. 碱化橄榄油加工废弃液对玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2019, (3): 185 –191 .
[10] 王永刚,姬铭泽,赵旭涵,于立河,薛盈文. 播期对白燕7号在黑龙江省中西部地区产量的影响[J]. 作物杂志, 2019, (3): 106 –111 .