作物杂志,2019, 第2期: 1–7 doi: 10.16035/j.issn.1001-7283.2019.02.001

• 专题综述 •    下一篇

作物快速育种技术研究进展

房裕东,韩天富   

  1. 中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2019-01-26 修回日期:2019-02-25 出版日期:2019-04-15 发布日期:2019-04-12
  • 通讯作者: 韩天富
  • 基金资助:
    国家重点研发计划(2017YFD0101400);国家大豆产业技术体系建设专项(CARS-04);中国农业科学院农业科技创新工程

Research Progress in Speed Breeding of Crops

Yudong Fang,Tianfu Han   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-01-26 Revised:2019-02-25 Online:2019-04-15 Published:2019-04-12
  • Contact: Tianfu Han

摘要:

缩短杂交后代生长周期、加快加代纯合速度是提高育种效率的重要途径。本文分析了影响作物生长周期的环境和遗传因素,总结了利用自然环境或人工光温控制措施加快作物育种进程的研究进展,并评估了分子标记辅助选择技术在快速育种中的应用价值。

关键词: 作物, 加代, 快速育种, 分子标记辅助选择

Abstract:

Shortening the growth cycles of progenies after crossing and accelerating the generation advancement are essential to improve efficiency of crops breeding. We analyzed the major environmental and genetic factors influencing the duration of growth cycle of crops and reviewed the latest progress in speed breeding by using optimum natural environmental conditions or artificial photothermal conditions. Moreover, we evaluated the value of the marker-assisted selection in the progress of speed breeding.

Key words: Crops, Generation advancement, Speed breeding, Marker-assisted selection

[1] 盖钧镒 . 作物育种学各论. 北京: 中国农业出版社, 2006: 10-12.
[2] Forster B P, Till B J, Ghanim A M A ,et al. Accelerated plant breeding. Cab Reviews, 2014,9:1-16.
[3] Foley J A, Ramankutty N, Brauman K A , et al. Solutions for a cultivated planet. Nature, 2011,478(7369):337-342.
doi: 10.1038/nature10452 pmid: 21993620
[4] Michael M . Book review-2052:A global forecast for the next forty years. Cadmus, 2012,1(5):1-20.
[5] Borthwick H A, Cathey H M . Significance of dark reversion of phytochrome in flowering of short-day plants. Science, 1962,136(3513):324-324.
doi: 10.1126/science.136.3513.324-b pmid: 17745911
[6] Washburn C F, Thomas J F . Reversion of flowering in Glycine max (Fabaceae). American Journal of Botany, 2000,87(10):1425-1438.
doi: 10.2307/2656869 pmid: 11034918
[7] 韩天富, 王金陵 . 大豆开花后光周期反应的研究. 植物学报, 2017(11):863-869.
[8] 韩天富, 王金陵 . 中国大豆不同生态类型开花至成熟期对光周期的反应. 作物学报, 1996,22(1):20-26.
[9] 韩天富, 王金陵, 范彬彬 , 等. 开花后光照长度对大豆农艺性状的影响. 应用生态学报, 1996,7(2):169-173.
doi: 10.1007/BF02951625
[10] Went F W . The effect of temperature on plant growth. Annual Review of Plant Physiology, 1953,4(1):347-362.
doi: 10.1146/annurev.pp.04.060153.002023
[11] 费志宏, 吴存祥, 孙洪波 , 等. 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009,35(8):1525-1531.
doi: 10.3724/SP.J.1006.2009.01525
[12] Mao T, Li J, Wen Z , et al. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics, 2017,18(1):415.
doi: 10.1186/s12864-017-3778-3 pmid: 28549456
[13] Laurie D A . Comparative genetics of flowering time. Plant Molecular Biology, 1997,35:167-177.
doi: 10.1023/A:1005726329248 pmid: 9291970
[14] Kang M Y, Yoo S C, Kwon H Y , et al. Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis. Scientific Reports, 2015,5:9728.
doi: 10.1038/srep09728 pmid: 4428065
[15] Golembeski G S, Imaizumi T . Photoperiodic regulation of florigen function in Arabidopsis thaliana. Arabidopsis Book, 2015,13:e0178.
doi: 10.1199/tab.0178 pmid: 26157354
[16] Xu F, Rong X, Huang X , et al. Recent advances of flowering locus T gene in higher plants. International Journal of Molecular Sciences, 2012,13(3):3773-3781.
doi: 10.3390/ijms13033773
[17] Levy Y Y, Dean C . The transition to flowering. Plant Cell, 1998,10(12):1973-1990.
doi: 10.1105/tpc.10.12.1973
[18] Hayama R, Coupland G . The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiology, 2004,135(2):677-684.
doi: 10.1104/pp.104.042614 pmid: 15208414
[19] Marshall C M, Tartaglio V, Duarte M , et al. The Arabidopsis sickle mutant exhibits altered circadian clock responses to cool temperatures and temperature-dependent alternative splicing. Plant Cell, 2016,28(10):2560-2575.
doi: 10.1105/tpc.16.00223 pmid: 27624757
[20] Nusinow D A, Helfer A, Hamilton E E , et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2012,475(7356):398-402.
doi: 10.1038/nature10182 pmid: 3155984
[21] Khaleda L, Cha J Y, Min G K , et al. Production and characterization of polyclonal antibody against Arabidopsis GIGANTEA,a circadian clock controlled flowering time regulator. Journal of Plant Biology, 2017,60(6):622-629.
doi: 10.1007/s12374-017-0305-7
[22] Shi J, Dong A, Shen W H . Epigenetic regulation of rice flowering and reproduction. Frontiers in Plant Science, 2015,5:803.
doi: 10.3389/fpls.2014.00803 pmid: 25674094
[23] Liu W, Jiang B, Ma L , et al. Functional diversification of Flowering Locus T homologs in soybean:GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytologist, 2017,217(3):1335-1345.
doi: 10.1111/nph.14884 pmid: 29120038
[24] Kobayashi Y, Weigel D . Move on up,it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes and Development, 2007,21(19):2371-2384.
doi: 10.1101/gad.1589007 pmid: 17908925
[25] Srikanth A, Schmid M . Regulation of flowering time:all roads lead to Rome. Cellular and Molecular Life Sciences, 2011,68(12):2013-2037.
doi: 10.1007/s00018-011-0673-y pmid: 21611891
[26] Tanaka C, Itoh T, Iwasaki Y , et al. Direct interaction between VRN1 protein and the promoter region of the wheat FT gene. Genes and Genetic Systems, 2018,93(1):25-29.
doi: 10.1266/ggs.17-00041 pmid: 29343669
[27] Woods D, Mckeown M, Dong Y , et al. Evolution of VRN2/GhD7-like genes in vernalization-mediated repression of grass flowering. Plant Physiology, 2016,170(4):2124-2135.
doi: 10.1104/pp.15.01279 pmid: 26848096
[28] Wilson R N, Heckman J W, Somerville C R . Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology, 1992,100(1):403-408.
doi: 10.1104/pp.100.1.403
[29] Carolina G G, Hu J, Urbez C , et al. Role of the gibberellin receptors GID1 during fruit‐set in Arabidopsis. Plant Journal, 2015,79(6):1020-1032.
doi: 10.1111/tpj.12603 pmid: 24961590
[30] Hisamatsu T, King R W . The nature of floral signals in Arabidopsis.Ⅱ.Roles for FLOWERING LOCUS T (FT) and gibberellin. Journal of Experiment Botany, 2008,59(14):3821-3829.
doi: 10.1093/jxb/ern232 pmid: 2576629
[31] Cheng J Z, Zhou Y P, Lv T X , et al. Research progress on the autonomous flowering time pathway in Arabidopsis. Physiology and Molecular Biology of Plants, 2017,23(3):1-9.
doi: 10.1007/s12298-017-0420-4 pmid: 28250579
[32] 吴绍骙 . 异地培育玉米自交系在生产上利用可能性的研究. 河南农学院学报, 2017(1):16-40.
[33] 刘发, 张乃发 . 对大豆南繁工作的总结与建议. 大豆科技, 2017(3):5.
[34] 周月光 . 杂交水稻一半功劳归南繁 . 海南日报, 2013 -04-26(T24).
[35] 吕青, 柯用春, 何志军 , 等. 南繁制种水稻基地现状以及问题分析. 农村经济与科技, 2017,28(20):24-25.
doi: 10.3969/j.issn.1007-7103.2017.20.018
[36] Normane B . Sixty-two years of fighting hunger:personal recollections. Euphytica, 2007,157(3):287-297.
doi: 10.1007/s10681-007-9480-9
[37] Kothari N, Hague S S, Frelichowski J , et al. Breeding and genetics:Utilization of cotton germplasm in the winter nursery at Tecoman,Mexico for plant breeding training and research. Journal of Cotton Science, 2011,15(3):271-273.
[38] 常从云, 韩天富 . 鼓粒期大豆种子的发芽力. 作物杂志, 2017(5):6-8.
doi: 10.3969/j.issn.1001-7283.2000.05.002
[39] 王仪春, 梁帅强, 王云华 , 等. 收获期对糯质玉米种子活力及呼吸代谢的影响. 浙江农业学报, 2016,28(6):910-914.
doi: 10.3969/j.issn.1004-1524.2016.06.02
[40] 蓝希骞, 蒋作甫, 谢皓 . 北京地区玉米就地加代技术的初步研究. 北京农学院学报, 2017(2):15-17.
[41] 王元 . 玉米一年两熟就地加代. 河南农业科学, 2017(1):15-17.
[42] 徐延基 . 加速玉米自交系繁殖途径的研究. 种子世界, 2017(1):26-27.
[43] Watson A, Ghosh S, Williams M J , et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018,4(1):23-29.
doi: 10.1038/s41477-017-0083-8 pmid: 29292376
[44] 王海波, 王彦霞, 赵和 . 如何加快作物遗传改良的速度. 河北农业科学, 2003,7(3):50-56.
doi: 10.3969/j.issn.1088-1631.2003.03.009
[45] 张莉, 张春荣, 岳竞之 , 等. 玉米一年繁育三代技术的研究. 农业科技通讯, 2017(5):46-48.
doi: 10.3969/j.issn.1000-6400.2009.05.022
[46] 王国胜, 陈举林, 侯玮 , 等. 玉米自交系一年三代选育模式研究. 现代农业科技, 2017(4):86.
doi: 10.3969/j.issn.1007-5739.2011.04.050
[47] 李峰, 王云鹏, 于立娜 , 等. 玉米自交系一年三代种植与选育技术研究. 中国农学通报, 2016,32(33):64-69.
[48] Sysoeva M I, Markovskaya E F, Shibaeva T G . Plants under continuous light:A review. Plant Stress, 2010,4(1):5-17.
[49] Ochatt S J, Sangwan R S, Marget P , et al. New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breeding, 2002,121(5):436-440.
doi: 10.1046/j.1439-0523.2002.746803.x
[50] O'Connor D J, Wright G C,Dieters M J ,et al. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Science, 2013,40(2):107-114.
doi: 10.3146/PS12-12.1
[51] Williams P H, Hill C B . Rapid-cycling populations of Brassica. American Association for the Advancement of Science, 2013,232(4756):1385-1389.
[52] Zheng Z, Wang H, Chen G , et al. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica, 2013,191(2):311-316.
doi: 10.1007/s10681-013-0909-z
[53] Mobini S H, Warkentin T D . A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology-Plant, 2016,52:530-536.
doi: 10.1007/s11627-016-9772-7
[54] Yao Y, Zhang P, Wang H B , et al. How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations? Euphytica, 2016,209(1):1-7.
doi: 10.1007/s10681-016-1646-x
[55] Stetter M G, Leo Z, Adrian S , et al. Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Frontiers in Plant Science, 2016,7(816):1-8.
doi: 10.3389/fpls.2016.00816 pmid: 4894896
[56] 孙以美 . 大豆就地一年四代种植研究总结. 安徽农业科学, 1982,1(12):61-67.
[57] Tanaka J, Hayashi T, Iwata H . A practical,rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breeding Science, 2016,66(4):542-551.
doi: 10.1270/jsbbs.15038 pmid: 27795679
[58] Nagatoshi Y, Fujita Y . Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant and Cell Physiology, 2019,60(1):77-84.
doi: 10.1093/pcp/pcy189
[59] Liu H, Zwer P, Wang H , et al. A fast generation cycling system for oat and triticale breeding. Plant Breeding, 2016,135(5):574-579.
doi: 10.1111/pbr.12408
[60] Roumet P, Morin F . Germination of immature soybean seeds to shorten reproductive cycle duration. Crop Science, 1997,37(2):521-525.
doi: 10.2135/cropsci1997.0011183X003700020035x
[61] 王海波, 谢晓亮, 孙国忠 , 等 . 一年多代的植物快速育种技术:中国, 99100489.2. 2004 -09-22.
[62] Wang X, Wang Y, Zhang G , et al. An integrated breeding technology for accelerating generation advancement and trait introgression in cotton. Plant Breeding, 2011,130(5):569-573.
doi: 10.1111/j.1439-0523.2011.01868.x
[63] Rizal G, Karki S, Alcasid M , et al. Shortening the breeding cycle of sorghum,a model crop for research. Crop Science, 2014,54(2):520-529.
doi: 10.2135/cropsci2013.07.0471
[64] Rahman M, Jiménez M M D . Behind the scenes of microspore-based double haploid development in Brassica napus:A review. Journal of Plant Science & Molecular Breeding, 2016,5(1):1-9.
[65] Germanà M A . Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 2011,30(5):839-857.
doi: 10.1007/s00299-011-1061-7 pmid: 21431908
[66] Yan G, Liu H, Wang H , et al. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Frontiers in Plant Science, 2017,8:1786.
doi: 10.3389/fpls.2017.01786 pmid: 29114254
[67] Dwivedi S L, Britt A B, Tripathi L , et al. Haploids:Constraints and opportunities in plant breeding. Biotechnology Advances, 2015,33(6):812-829.
doi: 10.1016/j.biotechadv.2015.07.001 pmid: 26165969
[68] 费志宏, 贾贞, 冷建田 , 等. 不同生态类型大豆品种光周期反应的鉴定. 作物杂志, 2017(4):46-49.
[69] Riaz A, Periyannan S, Aitken E , et al. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods, 2016,12(17):1-10.
doi: 10.1186/s13007-016-0102-1
[70] Shakoor N, Lee S, Mockler T C . High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 2017,38:184.
doi: 10.1016/j.pbi.2017.05.006 pmid: 28738313
[71] Tanger P, Klassen S, Mojica J P , et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific Reports, 2017,7:42839.
doi: 10.1038/srep42839 pmid: 5318881
[72] Mayo O, 张发成. 自花授粉作物育种中选择方法的比较. 北京农业科技, 1981,1(4):11-13.
[73] Crossa J, Pérezrodríguez P, Cuevas J , et al. Genomic selection in plant breeding:methods,models,and perspectives. Trends in Plant Science, 2017,22(11):961-975.
doi: 10.1016/j.tplants.2017.08.011 pmid: 28965742
[74] Hickey L T, Dieters M J, Delacy I H , et al. Screening for grain dormancy in segregating generations of dormant×non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica, 2010,172:183-195.
doi: 10.1007/s10681-009-0028-z
[75] Christopher J, Richard C, Chenu K , et al. Integrating rapid phenotyping and speed breeding to improve stay-green and root adaptation of wheat in changing,water-limited,Australian environments. Procedia Environmental Sciences, 2015,29(2):175-176.
doi: 10.1016/j.proenv.2015.07.246
[76] Wang X, Xu Y, Hu Z , et al. Genomic selection methods for crop improvement:Current status and prospects. The Crop Journal, 2018,6(4):330-340.
doi: 10.1016/j.cj.2018.03.001
[77] Jarquín D, Kocak K, Posadas L , et al. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics, 2014,15(1):740.
doi: 10.1186/1471-2164-15-740 pmid: 25174348
[78] Xu S Z, Zhu D, Zhang Q F . Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(34):12456-12461.
doi: 10.1073/pnas.1413750111 pmid: 25114224
[79] Daetwyler H D, Bansal U K, Bariana H S , et al. Genomic prediction for rust resistance in diverse wheat landraces. Theoretical & Applied Genetics, 2014,127(8):1795-1803.
doi: 10.1007/s00122-014-2341-8 pmid: 24965887
[80] Andersen J R, Lübberstedt T . Functional markers in plants. Trends in Plant Science, 2003,8(11):554-560.
doi: 10.1016/j.tplants.2003.09.010
[81] 韩天富, 房裕东, 孙石 , 等 . 一种采用异地夏繁加代加快大豆育种进程的方法:中国, 201711365797.5. 2017 -12-18.
[1] 郭利磊,朱家林,孙世贤,闫硕. 转基因作物的生物安全:基因漂移及其潜在生态风险的研究和管控[J]. 作物杂志, 2019, (2): 8–14
[2] 白雨,韩雪莹,董海洋,乌云苏都,李冰圳,陈贵林. 轮作及农艺措施对减轻向日葵列当危害的影响[J]. 作物杂志, 2019, (2): 192–196
[3] 崔勇,马自清,田恩平. 20年来宁夏中南部山区农业生产发展分析[J]. 作物杂志, 2019, (2): 28–38
[4] 魏益民. 东灰山遗址荞麦子粒的发现及年代分析[J]. 作物杂志, 2019, (1): 85–89
[5] 吴昊,李燕敏,谢传晓. 作物耐热生理基础与基因发掘研究进展[J]. 作物杂志, 2018, (5): 1–9
[6] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13–19
[7] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1–7
[8] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9–15
[9] 陈亮妹,李江遐,胡兆云,叶文玲,吴文革,马友华. 重金属低积累作物在农田修复中的研究与应用[J]. 作物杂志, 2018, (1): 16–24
[10] 宋莉,廖万有,王烨军,苏有健,张永利,罗毅,廖珺,吴卫国. 旱地作物间作绿肥研究进展[J]. 作物杂志, 2017, (6): 7–11
[11] 吴建富,卢志红,胡丹丹. 科学认识有机肥料在农业生产中的作用[J]. 作物杂志, 2017, (5): 1–6
[12] 周彤,陈雯,秦培亮,刘涛,孙成明. 作物水分智能管理研究进展[J]. 作物杂志, 2017, (5): 7–13
[13] 熊辉岩,段瑞君,王瑞生. 冷驯化影响越冬作物光合特性和株型特征的生理基础与分子机制的研究进展[J]. 作物杂志, 2017, (4): 21–26
[14] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[15] 李燕敏,祁显涛,刘昌林,刘方,谢传晓. 除草剂抗性农作物育种研究进展[J]. 作物杂志, 2017, (2): 1–6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 马瑞琦,亓振,常旭虹,王德梅,陶志强,杨玉双,冯金凤,孙敏,赵广才. 化控剂对冬小麦植株性状及产量品质的调节效应[J]. 作物杂志, 2018, (1): 133 –140 .
[5] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[6] 李红燕,王永宏,赵如浪,张文杰,明博,谢瑞芝,王克如,李璐璐,高尚,李少昆. 宁夏引/扬黄灌区玉米子粒脱水模型的构建与应用[J]. 作物杂志, 2018, (4): 149 –153 .
[7] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[8] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[9] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[10] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .