作物杂志,2020, 第4期: 114–120 doi: 10.16035/j.issn.1001-7283.2020.04.016

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米早期籽粒中强表达启动子的筛选

王莉1,2(), 王作平2(), 张中保2, 白玲1(), 吴忠义2()   

  1. 1河南大学省部共建作物逆境适应与改良国家重点实验室,475004,河南开封
    2北京市农林科学院北京农业生物技术研究中心/北京市农业基因资源和生物技术重点实验室,100097,北京
  • 收稿日期:2020-01-02 修回日期:2020-03-05 出版日期:2020-08-15 发布日期:2020-08-11
  • 通讯作者: 白玲,吴忠义
  • 作者简介:王莉,研究方向为细胞生物学,E-mail: 15537870386@163.com;|王作平为并列第一作者,研究方向为玉米分子育种,E-mail: wangzuoping@baafs.net.cn
  • 基金资助:
    北京市科委项目(Z171100001517001);北京市农林科学院储备性项目(KJCX20200407);北京市农林科学院储备性项目(KJCX20200104)

Screening of Strongly Expressed Promoters in Immature Maize Kernels

Wang Li1,2(), Wang Zuoping2(), Zhang Zhongbao2, Bai Ling1(), Wu Zhongyi2()   

  1. 1State Key Laboratory of Crop Stress Adaption and Improvement, Henan University, Kaifeng 475004, Henan, China
    2Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2020-01-02 Revised:2020-03-05 Online:2020-08-15 Published:2020-08-11
  • Contact: Bai Ling,Wu Zhongyi

摘要:

在植物基因表达调控的过程中,启动子作为调控基因表达的顺式元件起着重要作用。为了筛选在玉米早期籽粒中强表达的启动子,选取6个启动子pCaMV35SD、pUbiquitin、pZmActin1、pZmSTK2、pZm66589和pZmbHLH148,分别构建EGFP表达载体并转染玉米原生质体,快速验证载体功能构建的正确性;同时采用花粉磁转染法将6个表达载体导入玉米自交系郑58中,并对不同启动子驱动的EGFP载体在授粉后48h玉米籽粒中的荧光强度和荧光检出率进行观察和统计分析。结果表明,6个启动子驱动EGFP表达载体构建正确;pCaMV35SD启动子驱动EGFP表达载体的荧光最强,6个启动子驱动EGFP表达载体由强到弱依次为pCaMV35SD>pZmSTK2>pZm66589>pZmbHLH148>pUbiquitin>pZmActin1,其荧光检出率分别为27.17%、27.17%、29.83%、23.84%、13.40%和30.57%。

关键词: 启动子, 花粉磁转染法, 玉米籽粒, 绿色荧光蛋白, 玉米原生质体

Abstract:

Promoters play an important role in regulating gene expression. To screen strongly expressed promoters in immature maize kernels, six promoters, pCaMV35SD, pUbiquitin, pZmActin1, pZmSTK2, pZm66589, and pZmbHLH148, were for EGFP expression in this study. Maize protoplasts were transfected to quickly verify the vector function. At the same time, six expression vectors were introduced into Zheng58 by pollen magnetic transfection. Later, the expression of EGFP driven by different promoters in immature maize kernels were observed 48h after pollination. The results showed that the expression of EGFP was detected in case of all six promoters but the fluorescence of EGFP driven by pCaMV35SD promoter was the strongest, and the order of EGFP fluorescence strength driven by six promoters was pCaMV35SD > pZmSTK2 >pZm66589 > pZmbHLH148 > pUbiquitin > pZmActin1, with the fluorescence detection rate of 27.17%, 27.17%, 29.83%, 23.84%, 13.40% and 30.57%, respectively.

Key words: Promoter, Pollen magnetofection, Maize kernel, Green fluorescent protein, Maize protoplast

表1

试验中启动子基本信息

启动子
Promoter
长度
Length (bp)
表达类型
Expression type
参考文献
Reference
pCaMV35SD 770 组成型表达 [5]
pZmActin1 1 210 组成型表达 [6]
pUbiquitin 2 014 组成型表达 [7]
pZmSTK2 2 067 花粉特异性表达 [14]
pZm66589 2 000 胚特异性表达 [20]
pZmbHLH148 1 512 胚特异性表达 [21]

表2

试验中所用的引物

引物Primer 引物序列(5′-3′)Primer sequence (5′-3′)
Bar-F CTCTAGAAATGAGCCCAGAACGACGC (XbaⅠ)
Bar-R CGGATCCAGATCTTGGCAGGATATA (BamHⅠ)
pUbiquitin-EGFP-F ATCCTGCCAAGATCTGGATCCCGGTCGTGCCCCTCTCTAG
pUbiquitin-EGFP-R GCCCTTGCTCACCATGGTACCCTGCAGAAGTAACACCAAACAACAG
EGFP-F CCGGCATGCAAGCTGATAACG
EGFP-R GACACGCTGAACTTGTGGCC

图1

6个启动子-EGFP表达载体构建流程图 a. pYBA1132的T-DNA区;b. pYBA1132-Bar-EGFP的T-DNA区;c. pYBA1132-Bar-EGFP(-NptII)的T-DNA区;d. pCaMV35SD驱动EGFP的T-DNA区;e. pZmActin1、pZmSTK2、pZm66589、pZmbHLH148和pUbiquitin分别代表其他5个启动子的序列,可驱动EGFP表达,其T-DNA区与图1d中pCaMV35SD类似

图2

6个启动子-EGFP表达载体酶切鉴定 Marker:Trans 15 000bp DNA标记条带

图3

不同启动子驱动EGFP在原生质体中的表达 EGFP:绿色荧光场;Bright:明场;Merged:明场及荧光场的叠加;CK:未转染质粒的郑58原生质体;pCaMV35S:转入pYBA1132的原生质体;pCaMV35SD、pZmActin1、pZmSTK2、pZm66589、pZmbHLH148和pUbiquitin:6个启动子驱动EGFP重组载体转化的玉米原生质体;Bar=5μm,下同

图4

不同启动子驱动EGFP在郑58早期籽粒中的瞬时表达情况 CK:授粉48h后的空白对照早期籽粒;MNP:仅MNP处理的早期籽粒;pCaMV35SD、pZmActin1、pUbiquitin、pZmSTK2、pZmbHLH148和pZm66589:分别转入相对应启动子质粒的早期籽粒;Bar=200μm

表3

分别转染6个EGFP载体的郑58籽粒在授粉后48h的荧光检出率

启动子Promoter 荧光检出率Fluorescence detection rate (%)
pZmActin1 30.57±12.55a
pZm66589 29.83±9.16a
pCaMV35SD 27.17±7.96ab
pZmSTK2 27.17±7.96ab
pZmbHLH148 23.84±8.27ab
pUbiquitin 13.40±5.80b
[1] 戴景瑞, 鄂立柱 . 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010,18(1):1-5.
[2] Nuccio M L. Maize. New York: Humana Press, 2018.
[3] 夏江东, 夏平 . 高等植物启动子功能和结构研究进展. 楚雄师范学院学报, 2005,20(3):41-48.
[4] 朱丽萍, 于壮, 邹翠霞 , 等. 植物逆境相关启动子及功能. 遗传, 2010,32(3):229-234.
[5] Odell J T, Nagy F, Chua N H . Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 1985,313(28):810-812.
[6] Mc Elroy D, Zhang W G, Cao J , et al. Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell, 1990,2(2):163-171.
[7] Toki S, Takamatsu S, Nojiri C , et al. Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiology, 1992,100(3):1503-1507.
[8] Bhullar S, Chakravarthy S, Advani S , et al. Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiology, 2003,132(2):988-998.
[9] Bénédicte C, Scollan C, Ross S , et al. Co-silencing of homologous transgenes in tobacco. Molecular Breeding, 2000,6(4):407-419.
[10] Xu L, Ye R J, Zheng Y S , et al. Isolation of the endosperm-specific LPAAT gene promoter from coconut (Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Reports, 2010,29(9):1061-1068.
[11] Ye R J, Zhou F, Lin Y J . Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L. ssp.). Plant Cell Reports, 2012,31(7):1159-1172.
[12] Chen L, Jiang B J, Wu C X , et al. GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biology, 2014,14(1):245-257.
[13] Mande X, Yan L, Zhao Z Q , et al. Isolation and characterization of a green-tissue promoter from common wild rice (Oryza rufipogon Griff.). International Journal of Molecular Sciences, 2018,19(7):2009-2021.
[14] Wang H, Fan M X, Wang G H , et al. Isolation and characterization of a novel pollen-specific promoter in maize (Zea mays L.). Genome, 2017,60(6):485-495.
[15] Xu W Z, Liu W S, Ye R J , et al. A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. Plant Cell Reports, 2018,37(4):1-11.
[16] Komarnytsky S, Borisjuk N . Functional analysis of promoter elements in plants. Genetic Engineering, 2003,25:113-141.
[17] Roy S, Choudhury S R, Singh S K , et al. Functional analysis of light-regulated promoter region of AtPolλ gene. Planta, 2012,235(2):411-432.
[18] Lee S C, Kim S H, Kim S R . Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. Journal of Plant Biology, 2013,56(2):115-121.
[19] Tao Y, Wang F T, Jia D M , et al. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in Maize. Plant Molecular Biology Reporter, 2015,33(2):200-208.
[20] Liu X Q, Tian J, Zhou X J , et al. Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnology Journal, 2014,12(9):1286-1296.
[21] Lu X D, Chen D J, Shu D F , et al. The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiology, 2013,162(1):440-455.
[22] Yoo S D, Cho Y H, Sheen J . Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protocols, 2007,2(7):1565-1572.
[23] Zhao X, Meng Z G, Wang Y , et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 2017,3(12):956-964.
[24] Kausch A P, Owen T P, Zachwieja S J , et al. Mesophyll-specific,light and metabolic regulation of the C4 PPCZm1 promoter in transgenic maize. Plant Molecular Biology, 2001,45(1):1-15.
[25] José-Estanyol M, Pérez P, Puigdomènech P . Expression of the promoter of HyPRP,an embryo-specific gene from Zea mays in maize and tobacco transgenic plants. Gene, 2005,356(1):146-152.
[26] Chen X P, Wang Z Y, Gu R L , et al. Isolation of the maize Zpu1 gene promoter and its functional analysis in transgenic tobacco plants. Plant Cell Reports, 2007,26(9):1555-1565.
[27] Srilunchang K O, Krohn N G, Dresselhaus T . DiSUMO-like DSUL is required for nuclei positioning,cell specification and viability during female gametophyte maturation in maize. Development, 2010,137(2):333-345.
[28] 王昌涛, 梁粤, 王欢 , 等. 玉米Ubiquitin启动子的克隆及功能鉴定. 沈阳农业大学学报, 2006,37(1):9-12.
[29] 焦勇, 柳小庆, 江海洋 , 等. 植物组织特异性启动子研究进展. 中国农业科技导报, 2019,21(1):24-34.
[1] 闫丽,杨强,邵宇鹏,李丹丹,王志坤,李文滨. 大豆GmWRI1a基因启动子克隆及序列分析[J]. 作物杂志, 2017, (2): 51–58
[2] 刘建伟, 陈晓峰, 刘广富, 郭宗端, 李新柱, 胡兆平, 张亮. 大豆CYP78A5基因组织特异性启动子的克隆及表达分析[J]. 作物杂志, 2014, (1): 54–58
[3] 张红梅, 王国英, 张中东, 等. 农杆菌介导的玉米遗传转化进展[J]. 作物杂志, 2000, (6): 1–4
[4] 马兴林, 林治安, 许建新, 等. 密度对玉米籽粒及秸秆产量的影响[J]. 作物杂志, 1998, (6): 12–13
[5] 张效梅, 穆志新, 刘金玉. 黑玉米籽粒的营养成分分析[J]. 作物杂志, 1998, (1): 16–17
[6] 张泽民, 于正坦, 苗亚琦. 不同年代玉米杂交种籽粒营养成分的分析[J]. 作物杂志, 1997, (4): 32–33
[7] 杨斌, 陈泽辉. CIMMYT优质蛋白玉米研究概况[J]. 作物杂志, 1995, (4): 8–10
[8] 刘仁东, 杨秀海, 徐家舜. 我国高油玉米的发展前景展望[J]. 作物杂志, 1995, (3): 1–5
[9] 石德权. 提高优质蛋白玉米含油量的研究[J]. 作物杂志, 1994, (5): 13–13
[10] 刘瑞征. 玉米湿储法[J]. 作物杂志, 1992, (2): 39–40
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!