作物杂志,2017, 第2期: 51–58 doi: 10.16035/j.issn.1001-7283.2017.02.009

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

大豆GmWRI1a基因启动子克隆及序列分析

闫丽,杨强,邵宇鹏,李丹丹,王志坤,李文滨   

  1. 东北农业大学/大豆生物学教育部重点实验室/农业部东北大豆生物学与遗传育种重点实验室,150030,黑龙江哈尔滨
  • 收稿日期:2016-11-21 修回日期:2017-02-26 出版日期:2017-04-15 发布日期:2018-08-26
  • 通讯作者: 王志坤,李文滨
  • 作者简介:闫丽,硕士研究生,研究方向为大豆遗传育种与分子生物学
  • 基金资助:
    营养功能型转基因大豆新品种培育(2016ZX08004-003);2016年东北农业大学“学术骨干”项目

Cloning and Sequence Analysis of GmWRI1a Gene Promoter in Soybean

Yan Li,Yang Qiang,Shao Yupeng,Li Dandan,Wang Zhikun,Li Wenbin   

  1. Northeast Agricultural University/Key Laboratory of Soybean Biology, Chinese Ministry of Education/Key Laboratory of Soybean Biology and Genetics Breeding,Chinese Agriculture Ministry,Harbin 150030,Heilongjiang,China
  • Received:2016-11-21 Revised:2017-02-26 Online:2017-04-15 Published:2018-08-26
  • Contact: Zhikun Wang,Wenbin Li

摘要:

以大豆基因组文库Phytozome公布的大豆Williams82基因组序列为参考,应用Primer Premier 5.0软件设计引物,用PCR技术扩增了大豆GmWRI1a基因的启动子序列,构建了重组克隆载体pGM-T-pGmWRI1a,并通过PCR扩增对阳性克隆进行鉴定送测序。克隆获得GmWRI1a基因启动子序列1 686bp,该启动子序列除含有必需的起始转录位点、TATA-box、CTTA-box外还包含多个顺式作用元件,如光应答元件、赤霉素应答元件、表达分生组织相关元件、抗旱诱导元件等。同时,构建了该启动子植物表达载体pBI-pGmWRI1a,通过PCR扩增、限制性酶切对阳性克隆进行了鉴定,为启动子的功能研究奠定基础。大豆GmWRI1a基因启动子克隆与序列分析,将为进一步研究大豆GmWRI1a基因的表达调控及其功能分析提供参考。

关键词: GmWRI1a基因启动子, 大豆, 序列分析, 顺式调控元件

Abstract:

According to the Williams 82’s genomic sequences reported in the Phytozome, primers were designed by Primer Premier 5.0. The promoter product sequence of GmWRI1a gene was amplified by PCR method. The recombinant vectors pGM-T-pGmWRI1a and PBI121-pGmWRI1a were constructed. The positive clones were identified by PCR amplification and restriction enzyme digestion. The full length of the GmWRI1a promoter was 1 687bp. The promoter sequence contained the necessary initiation transcription sites, such as TATA-box,CTTA-box and multiple other cis-acting elements: light responsiveness element, gibberellin response element, cis-acting regulatory element related to meristem expression, drought-inducing elements, and others. Cloning and characterization of the GmWRI1a gene promoter will provide basis for the further study of regulation and functional analysis of GmWRI1a gene in soybean.

Key words: Promoter of GmWRI1a gene, Soybean, Sequence analysis, Cis-regulatory element

图1

东农47 DNA提取结果 M:核酸分子量标准DL15000 Nucleic acid molecular weight standard 15000;1-4:DNA提取液DNA extracts"

图2

GmWRI1a基因启动子PCR扩增结果 M:核酸分子量标准DL2000,下同 Nucleic acid molecular weight standard 2000, the same below;1-3:GmWRI1a基因启动子GmWRI1a gene promoter(1 686bp)"

图3

重组质粒pGM-T-pGmWRI1a的PCR鉴定 1-4:pGM-T-pGmWRI1a重组质粒pGM-T-pGmWRI1a recombinant plasmid;5:空白对照 Blank control"

图4

GmWRI1a基因启动子序列比对结果"

图5

GmWRI1a基因启动子序列分析 序列中可能的顺式作用元件用方块标出;预测的转录起始位点用黑体表示;下画线ATG为GmWRI1a基因的起始密码子"

表1

GmWRI1a基因启动子顺式调控元件的位置与推测功能"

调控元件Regulatory sequence 位置Position 核心序列Core sequence 预测功能Function
ACE
797(+)
ACGTGGA
光应答元件
Cis-acting element involved in light responsiveness
AE-Box

176(+),
1278(+),
655(–)
AGAAAC

光响应模块
Part of a module for light response
ATC-motif
1227(–)
AGTAATCT
光应答元件
Part of a conserved DNA module involved in light responsiveness
CATT-motif
210(+)
GCATTC
光响应一部分
Part of a light responsive
GA-motif
835(–)
AAAGATGA
光响应元件
Part of a light responsive element
G-box
795(+),
796(–)
TGACGTGG
CACGTC
光反应调节元件
Cis-acting regulatory element involved in light responsiveness
调控元件Regulatory sequence 位置Position 核心序列Core sequence 预测功能Function
GT1-motif

674(+),
1056(+),
914(–)
GGTTAA

光反应元件
Light responsive element
CTA-box
1008(+)
GCCACT
表达分生组织相关
Cis-acting regulatory element related to meristem expression
P-Box
896(–)
CCTTTTG
赤霉素应答元件
Gibberellin-responsive element
GARE-motif
603(+),
1482(+)
AAACAGA
TCTGTTG
赤霉素响应元件
Gibberellin-responsive element
CE3
802(+)
GACGCGTGT
ABA和VP1响应元件
Cis-acting element involved in ABA and VP1 responsiveness
MBS
791(+)
TAACTG
MYB参与抗旱诱导结合位点
MYB binding site involved in drought-inducibility
Skn-1_motif
362(+),
664(+)
GTCAT
胚乳表达所需的调节元件
Cis-acting regulatory element required for endosperm expression
GCN4_motif

370(+),
1005(+),
818(+)
TGAGTCA

胚乳表达顺式调控元件
Cis-regulatory element involved in endosperm expression

图6

重组质粒pBI-pGmWRI1a的PCR鉴定 1-3:pGM-T-pGmWRI1a重组质粒 pGM-T-pGmWRI1a recombinant plasmid;4:空白对照 Blank control"

图7

重组质粒pBI-pGmWRI1a的Hind Ⅲ、XbaⅠ酶切鉴定 1:pBI-pGmWRI1a重组质粒pBI-pGmWRI1a recombinant plasmid"

[1] Pabo C O, Sauer R T . Transcription factors structural families and principles of DNA recognition.Annual Review of Biochemistry. 1992,61:1053-1095.
doi: 10.1146/annurev.bi.61.070192.005201 pmid: 1497306
[2] 姜显光 . 植物油脂中脂肪酸的分析研究. 大连:辽宁师范大学, 2008.
doi: 10.7666/d.y1341481
[3] Durrett T P, Benning C, Ohlrogge J . Plant triacylglycerols as feedstocks for the production of biofuel. Plant Journal, 2008,54:593-607.
doi: 10.1111/j.1365-313X.2008.03442.x pmid: 18476866
[4] Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acidbiosynthesis in plants. Metabolic Engineering, 2002,4(1):12-21.
doi: 10.1006/mben.2001.0204 pmid: 11800570
[5] Abogadallah G M, Nada R M, Malinowski R , et al. Overexpression of HARDY,an AP2/ERF gene from arabidopsis,improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta, 2011,233(6):1265-1276.
doi: 10.1007/s00425-011-1382-3
[6] Joo J, Choi H J, Lee Y H , et al. A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11. Planta, 2013,238(1):155-170.
doi: 10.1007/s00425-013-1880-6
[7] Wei M, Que K, Vincent A , et al. Wrinkled1a ubiquitous regulator in oil accumulating tissues from arabidopsis embryos to oil palm Mesocarp. Plos One, 2013,8(7):e68887 .
doi: 10.1371/journal.pone.0068887
[8] O’Hara P, SlabasA R, Fawcett T . Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiology, 2002,129:310-320.
doi: 10.1104/pp.010956
[9] NapierJ A , GrahamA. Tailoring plant lipid composition:designer oilseeds come of age. Current Opinion in Plant Biology, 2010,13:330-337.
doi: 10.1016/j.pbi.2010.01.008 pmid: 20185359
[10] 韩志萍, 安利佳, 侯和胜 . AP2/EREBP转录因子的结构与功能.中国农学通报, 2006(3):33-38.
doi: 10.3969/j.issn.1000-6850.2006.03.009
[11] 默韶京 . 长穗偃麦草中AP2/EREBP类转录因子基因的克隆与功能验证. 保定:河北农业大学, 2011.
doi: 10.7666/d.y1897324
[12] Toshitsugu N, Kaoru S, Tatsuhito F , et al. Genome-wide analysis of the ERF gene family in arabidopsis and rice. Plant Physiology, 2006,140(2):411-432.
doi: 10.1104/pp.105.073783 pmid: 16407444
[13] Weigel D . The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell, 1995,7(4):388-389.
doi: 10.2307/3870077 pmid: 7773013
[14] Moose S P, Sisco P H . Glossy15,an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes & Development, 1996,10(23):3018-3027.
doi: 10.1101/gad.10.23.3018 pmid: 8957002
[15] Gu Y Q, Wildermuth M C, Chakravarthy S , et al. Tomato transcription factors Pti4,Pti5 and Pti6 activate defense responses when expressed in arabidopsis. Plant Cell, 2002,14(4):817-831.
doi: 10.1105/tpc.000794
[16] 鲁亚萍, 刘风珍, 万勇善 . 花生转录因子WRI1基因特征的in silico分析.分子植物育种, 2012(3):363-370.
[17] 张经军 . 甘蓝型油菜(Brassica napus)WRI1同源基因克隆及功能初步分析. 石家庄:河北师范大学, 2007.
doi: 10.7666/d.y1099930
[18] 王志坤, 常健敏, 李文滨 . 大豆GmWRI1a基因克隆及生物信息学分析.东北农业大学学报, 2013(7):11-16.
doi: 10.3969/j.issn.1005-9369.2013.07.003
[19] Poxleitner M, Rogers S W, Lacey S A , et al. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant Journal, 2006,47(6):917-933.
doi: 10.1111/tpj.2006.47.issue-6
[20] 王志坤, 常健敏, 李丹丹 , 等. 大豆GmWRI1a基因克隆及生物信息学分析. 东北农业大学学报, 2013,44(7):11-16.
doi: 10.3969/j.issn.1005-9369.2013.07.003
[21] Ohto M A, Floyd S K, Fischer R L , et al. Effects of APETALA2 on embryo,endosperm and seed coat development determine seed size in arabidopsis. Sexual Plant Reproduction, 2009,22(4):277-289.
doi: 10.1007/s00497-009-0116-1
[22] Kang M, Qian Z, Zhu D , et al. Characterization of micro-RNAs expression during maize seed development. BMC Genomics, 2012,13(1):360.
doi: 10.1186/1471-2164-13-360 pmid: 3468377
[23] 赵利锋, 柴团耀 . AP2/EREBP转录因子在植物发育和胁迫应答中的作用. 植物学报, 2008,25(1):89-101.
doi: 10.3969/j.issn.1674-3466.2008.01.013
[24] Thirugnanasambantham K, Durairaj S, Saravanan S , et al. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Molecular Biology Reporter, 2015,33(3):1-11.
doi: 10.1007/s11105-014-0732-2
[25] 路静, 赵华燕, 何奕昆 , 等. 高等植物启动子及其应用研究进展. 自然科学进展, 2004,14(8):856-861.
doi: 10.3321/j.issn:1002-008X.2004.08.003
[26] Lau O S, Deng X W . Plant hormone signaling lightens up:integrators of light and hormones. Current Opinion in Plant Biology, 2010,13(5):571-577
doi: 10.1016/j.pbi.2010.07.001 pmid: 20739215
[27] Wu X L, Liu Z H, Hu Z H , et al. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. Journal of Integrative Plant Biology, 2014,56(6):582-593.
doi: 10.1111/jipb.v56.6
[28] Surokin L P, Chua N H . Binding sites for two novel phosphoproteins,3AF5 and 3AF3,are required for rhcS-3A expression, Plant Cell, 1992,4(4):473-483.
doi: 10.2307/3869448 pmid: 1498605
[29] 李丹丹, 闫丽, 常健敏 , 等. 大豆GmWRI1基因在糖、植物激素及盐胁迫下的表达分析.作物杂志, 2015(4):41-46.
doi: 10.16035/j.issn.1001-7283.2015.04.010
[30] Jurriaan T, Victor F, Brigitte M M . The multifaceted role of ABA in disease resistance. Trends in Plant Science, 2009,14(6):310-317.
doi: 10.1016/j.tplants.2009.03.006 pmid: 19443266
[31] 陈其军, 安瑞 . 通过同时激活依赖于ABA和不依赖于ABA的逆境胁迫信号转导途径改善拟南芥和烟草的抗逆性. 2004中国植物生理生态学学术研讨会论文摘要汇编, 2004.
[32] Baud S, Mendoza M S, To A , et al. WRINKLED1 specifies the regulatory action of LEAFYCOTYLEDON2 towards fatty acid metabolism during seed maturation in arabidopsis. Plant Journal for Cell & Molecular Biology, 2007,50(5):825-838.
[33] Mu J, Tan H, Zheng Q , et al. LEAFYCOTYLEDON1 is a key regulator of fatty acid biosynthesis in arabidopsis. Plant Physiology, 2008,148(2):1042-1054.
doi: 10.1104/pp.108.126342
[34] Yue J, Sun H, Zhang W , et al. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. BMC Plant Biology, 2015,15(1):95.
doi: 10.1186/s12870-015-0472-y pmid: 25888209
[35] Andre C, Froehlich J, Moll M , et al. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in arabidopsis. Plant Cell, 2007,19(6):2006-2022.
doi: 10.1105/tpc.106.048629 pmid: 17557808
[1] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114–120
[2] 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 44–50
[3] 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152–155
[4] 马天乐,章建新. 不同复种方式麦茬夏大豆的干物质积累、产量及经济效益比较[J]. 作物杂志, 2018, (1): 156–159
[5] 李丽娜,金龙国,谢传晓,刘昌林. 转基因玉米和转基因大豆盲样检测方法[J]. 作物杂志, 2017, (6): 37–44
[6] 董志敏,厉志,刘佳,陈亮,衣志刚,王博,刘宝权. 大豆抗灰斑病研究进展[J]. 作物杂志, 2017, (3): 1–5
[7] 周学超,丁素荣,魏云山,周艳芳,魏学,娜日娜,李峰. 不同鲜食大豆品种(系)在赤峰地区的适应性评价[J]. 作物杂志, 2017, (3): 44–48
[8] 任国勇,李伟,张礼凤,王彩洁,戴海英,王金龙,徐冉,张彦威. 转HarpinXooc蛋白编码基因hrf2大豆的胞囊线虫病1号小种抗性鉴定[J]. 作物杂志, 2017, (3): 49–53
[9] 张旭丽,邢宝龙,王桂梅,殷丽丽. 密度对晋北区大豆农艺性状、经济性状及产量的影响[J]. 作物杂志, 2017, (3): 127–131
[10] 张喜亭,曹立为,吕书财,陈国兴,王永吉,于舒函,龚振平. 黑土容重对大豆氮素吸收及产量的影响[J]. 作物杂志, 2017, (3): 132–137
[11] 田艺心,高凤菊. 高蛋白大豆生长发育及干物质积累分配对密度的响应研究[J]. 作物杂志, 2017, (2): 121–125
[12] 鲁萍,金成功,张茜,姜佰文,闫南南,肖同玉,白雅梅,李景欣,陈睿,李静. 反枝苋和大豆对降雨季节波动的生理生态响应[J]. 作物杂志, 2017, (2): 114–120
[13] 高宇,刘延超,史树森,崔娟,熊晋峰. 我国大豆田蓟马研究现状[J]. 作物杂志, 2017, (1): 8–13
[14] 李海燕,蔡德利,陈井生,段玉玺,陈立杰,商莹宇. 大豆抗感资源对大豆胞囊线虫3号生理小种生长发育动态的影响[J]. 作物杂志, 2017, (1): 144–149
[15] 赵乾旭,岳献荣,夏运生,张乃明,年夫照,杨云强,马玉林. 设施条件接种丛枝菌根真菌对紫色土上玉米/大豆生长及氮素利用的影响[J]. 作物杂志, 2016, (5): 94–100
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .