作物杂志,2020, 第4期: 64–71 doi: 10.16035/j.issn.1001-7283.2020.04.009

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

河北省小麦品质相关基因的KASP标记检测

单子龙(), 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤()   

  1. 石家庄市农林科学研究院,050041,河北石家庄
  • 收稿日期:2019-10-24 修回日期:2019-11-26 出版日期:2020-08-15 发布日期:2020-08-11
  • 通讯作者: 高振贤
  • 作者简介:单子龙,主要从事小麦遗传育种研究,E-mail: shanzil@163.com
  • 基金资助:
    国家重点研发计划(2016YFD0300407);河北现代农业小麦产业技术体系;石家庄市科学技术研究与发展计划(181490392A)

Detection of Quality-Related Genes in the Wheat Varieties Authorized in Hebei Province by KASP Markers

Shan Zilong(), Ban Jinfu, Zhao Yankun, Cao Qiao, Tian Guoying, He Mingqi, Gao Zhenxian()   

  1. Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, China
  • Received:2019-10-24 Revised:2019-11-26 Online:2020-08-15 Published:2020-08-11
  • Contact: Gao Zhenxian

摘要:

为了加速小麦品质改良,利用高通量KASP标记检测1970年以来河北省审定的小麦品种153份,这些功能标记包括检测1RS/1BL和1RS/1AL易位系、高分子量麦谷蛋白亚基、籽粒硬度、提高籽粒蛋白含量和促进直链淀粉合成,以及与籽粒品质颜色相关基因的KASP标记,共计22个。结果表明,1RS/1BL和1RS/1AL易位系占比分别是43.14%和9.15%;5个标记检测高分子量麦谷蛋白亚基,Glu-A1位点Glu-Ax1和Ax2*亚基占比分别是39.22%和11.76%,Glu-B1位点Bx7OE亚基占比1.96%,Glu-D1位点1Dx5+1Dy10亚基占比13.07%。3个标记检测小麦籽粒硬度基因,Pina-D1bPinb-D1bPinb-B2b等位变异,占比分别是5.88%、70.59%和35.95%;没有检测到与提高籽粒蛋白含量和促进直链淀粉合成有关的基因Gpc-B1Wx-B1的优异等位变异;检测了10个与籽粒品质颜色有关的基因Ppo-A1Ppo-D1Psy-A1Psy-B1Psy-D1/Sr25Zds-A1Lox-B1TaLyc-B1TaPds-B1TaPod-A1,优异等位变异占比分别是69.93%、7.19%、27.45%、9.15%、100.00%、15.03%、75.82%、71.90%、25.49%和25.49%,其中Ppo-D1位点的优异等位变异呈逐年下降的趋势。综上所述,KASP标记可高效检测小麦品质相关基因的优异等位变异,在河北省小麦品质改良中有很好的应用前景。

关键词: 小麦, KASP标记, 品质

Abstract:

To accelerate wheat quality improvement, 153 wheat varieties of Hebei Province since 1970s were analyzed using the high-throughput KASP markers. These functional markers included the detection of 1RS/1BL and 1RS/1AL translocation lines, high-molecular-weight glutenin subunits, grain hardness, gene related to grain protein content and amylose synthesis, and grain color. The results showed that the translocation lines of 1RS/1BL and 1RS/1AL accounted for 43.14% and 9.15% respectively. Glu-Ax1 and Ax2* subunits accounted for 39.22% and 11.76% respectively at Glu-A1 locus; Bx7OE subunits accounted for 1.96% at Glu-B1 locus, 1Dx5+1Dy10 subunits accounted for 13.07% at Glu-D1 locus. Three markers were used to detect the hardness genes of wheat grain, and allelic variations Pina-D1b, Pinb-D1b and Pinb-B2b accounted for 5.88%, 70.59%, and 35.95% respectively. No favorable allelic variations were detected in Gpc-B1 and Wx-B1, which were related to increasing grain protein content and amylose synthesis, respectively. Ten genes, Ppo-A1, Ppo-D1, Psy-A1, Psy-B1, Psy-D1/Sr25, Zds-A1, Lox-B1, TaLyc-B1, TaPds-B1 and TaPod-A1 related to grain quality color were also detected and the proportion of favourable alleles were 69.93%, 7.19%, 27.45%, 9.15%, 100.00%, 15.03%, 75.82%, 71.90%, 25.49% and 25.49%, respectively. The favorable allele variation of Ppo-D1 locus showed a decreasing trend year by year. KASP markers can detect favorable allele of wheat quality-related genes effectively, which has a good application prospect in wheat quality improvement in Hebei Province.

Key words: Wheat, KASP markers, Quality

表1

153份供试品种名称

序号
Number
品种
Variety
序号
Number
品种
Variety
序号
Number
品种
Variety
序号
Number
品种
Variety
1 冀麦1号Jimai 1 31 津丰一号Jinfeng 1 61 石新733 Shixin 733 91 科农199 Kenong 199
2 冀麦2号Jimai 2 32 泰山1号Taishan 1 62 邯4589 Han 4589 92 金麦一号Jinmai 1
3 冀麦3号Jimai 3 33 泰山5号Taishan 5 63 冀5385 Ji 5385 93 藁优9908 Gaoyou 9908
4 冀麦4号Jimai 4 34 冀麦30号Jimai 30 64 科农9204 Kenong 9204 94 邯00-7086 Han 00-7086
5 冀麦5号Jimai 5 35 冀麦31号Jimai 31 65 石家庄9号Shijiazhuang 9 95 衡6599 Heng 6599
6 冀麦6号Jimai 6 36 冀麦33号Jimai 33 66 藁优9409 Gaoyou 9409 96 邯麦11号Hanmai 11
7 冀麦7号Jimai 7 37 冀麦36号Jimai 36 67 衡7228 Heng 7228 97 冀7369 Ji 7369
8 冀麦8号Jimai 8 38 冀麦37号Jimai 37 68 冀5579 Ji 5579 98 冀5265 Ji 5265
9 冀麦9号Jimai 9 39 冀麦38号Jimai 38 69 石家庄10号Shijiazhuang 10 99 永麦1号Yongmai 1
10 冀麦10号Jimai 10 40 冀麦42号Jimai 42 70 石新539 Shixin 539 100 金麦54 Jinmai 54
11 冀麦11号Jimai 11 41 衡4041 Heng 4041 71 晶白麦1号Jingbaimai 1 101 石优17号Shiyou 17
12 冀麦13号Jimai 13 42 河农326 Henong 326 72 白硬冬2号Baiyingdong 2 102 河农825 Henong 825
13 冀麦14号Jimai 14 43 河农972 Henong 972 73 藁优9415 Gaoyou 9415 103 石新616 Shixin 616
14 冀麦15号Jimai 15 44 25993 74 衡4338 Heng 4338 104 衡4399 Heng 4399
15 冀麦16号Jimai 16 45 石5093 Shi 5093 75 河农822 Henong 822 105 邢麦6号Xingmai 6
16 冀麦17号Jimai 17 46 中麦9号Zhongmai 9 76 衡观35 Hengguan 35 106 石麦18号Shimai 18
17 冀麦18号Jimai 18 47 邯4564 Han 4564 77 石麦12号Shimai 12 107 河农6049 Henong 6049
18 冀麦19号Jimai 19 48 河农85-9 Henong 85-9 78 石麦14号Shimai 14 108 冀6358 Ji 6358
19 冀麦20号Jimai 20 49 5099 79 衡5229 Heng 5229 109 藁优2018 Gaoyou 2018
20 冀麦21号Jimai 21 50 8901-11 80 NC 2号NC 2 110 邯麦12号Hanmai 12
21 冀麦22号Jimai 22 51 河农341 Henong 341 81 良星99 Liangxing 99 111 衡0628 Heng 0628
22 冀麦23号Jimai 23 52 邯5316 Han 5316 82 科农213 Kenong 213 112 石新811 Shixin 811
23 冀麦24号Jimai 24 53 梁麦2号Liangmai 2 83 师栾02-1 Shiluan 02-1 113 河农58-3 Henong 58-3
24 冀麦25号Jimai 25 54 沧核030 Canghe 030 84 冀丰703 Jifeng 703 114 石优20号Shiyou 20
25 冀麦26号Jimai 26 55 石4185 Shi 4185 85 石麦16号Shimai 16 115 河农9206 Henong 9206
26 冀麦27号Jimai 27 56 高优503 Gaoyou 503 86 石麦15号Shimai 15 116 衡136 Heng 136
27 冀麦28号Jimai 28 57 石家庄8号Shijiazhuang 8 87 石新828 Shixin 828 117 邯麦13 Hanmai 13
28 冀麦29号Jimai 29 58 邯优3475 Hanyou 3475 88 科农1093 Kenong 1093 118 金禾9123 Jinhe 9123
29 冀麦5418 Jimai 5418 59 衡95观26 Heng 95 guan 26 89 藁优9618 Gaoyou 9618 119 石麦19 Shimai 19
30 衡水6404 Hengshui 6404 60 邯6172 Han 6172 90 河农4198 Henong 4198 120 河农5290 Henong 5290
序号
Number
品种
Variety
序号
Number
品种
Variety
序号
Number
品种
Variety
序号
Number
品种
Variety
121 邯麦14 Hanmai 14 130 河农7069 Henong 7069 138 冀麦120 Jimai 120 146 科农2011 Kenong 2011
122 婴泊700 Yingbo 700 131 冀麦518 Jimai 518 139 中麦8号Zhongmai 8 147 邯农1412 Hannong 1412
123 衡4444 Heng 4444 132 藁优5766 Gaoyou 5766 140 衡科6021 Hengke 6021 148 石农086 Shinong 086
124 邢麦7号Xingmai 7 133 轮选103 Lunxuan 103 141 中信麦99 Zhongxinmai 99 149 石麦26-1 Shimai 26-1
125 农大399 Nongda 399 134 衡S29 Heng S29 142 邯生730 Hansheng 730 150 石麦26-2 Shimai 26-2
126 石新633 Shixin 633 135 石麦24 Shimai 24 143 石麦25 Shimai 25 151 石麦25 Shimai 25
127 石麦22 Shimai 22 136 科农2009 Kenong 2009 144 邯麦17 Hanmai 17 152 石麦28 Shimai 28
128 科农1006 Kenong 1006 137 藁优5218 Gaoyou 5218 145 邯麦15 Hanmai 15 153 石麦29 Shimai 29
129 冀麦585 Jimai 585

图1

部分功能标记KASP分析的品种聚类图 聚集到x轴品种用蓝色表示,聚集到y轴品种用红色表示,黑色是不加模板对照。a. 横轴聚集1BL/1BL,纵轴聚集1RS/1BL,b. 横轴聚集Pinb-D1a,纵轴聚集Pinb-D1b,c. 横轴聚集增加GPC等位基因,纵轴聚集正常GPC等位基因,d. 横轴聚集Psy1Da-f,纵轴聚集Psy-D1g

表2

品质相关基因KASP标记在河北省小麦品种中的分布

性状
Trait
优异等位变异
Favourable allele
含优异等位变异品种编号
Number of varieties with favourable allele
含杂合位点品种编号
Number of varieties with heterozygous locus
黑麦易位系
Rye translocation
line
1RS/1BL 10、16~18、24~26、34、36、39、41~48、52、53、55、57、59、60、62、64、68、70、74~77、79~81、84~88、92~94、97、100、101、106、107、111、114、115、117、119、121、123、124、
127~129、134、138、140、142、145、146、152
1RS/1AL 19、23、35、64、69、72、74、82、84、87、89、104、109、118 33、37、54、56、63、95、101、113、119、134
高分子量
谷蛋白亚基
High molecular
weight glutenin
subunits
Glu-Ax1 2、3、5、8、9、10、12、13、18、21、22、25、27、28、30、34、36~39、42、43、48、51、57、59、62、64、69、74、76、77、84、86、87、95、97、103、106、112、117~119、121、124、
127、128、130、131、133、135、136、139、141、143、144、
147、148、151、153
Glu-Ax2* 4、6、15、16、20、31~33、35、41、45、47、58、68、75、85、90、111
Bx7OE 5、32、95
1Dx5+1Dy10 36、49、50、66、73、79、83、87、89、91、98、103~105、107、
122、125、126、132、137
籽粒硬度
Kernel hardness
Pina-D1b 50、73、79、83、98、103、122、126、132 56、90、96、137
Pinb-D1b 3、4、6、8、10、11、13、15~17、19、20、22~25、28、30、31、37~39、41、44~47、49、51~53、55、57~61、63、64、66、68~
72、74~76、78、80~82、84~89、91~95、97、99、100、102、104~
118、120、121、123~125、127、129、133~136、138~144、146~
153
29、48、90、101、126、128
Pinb-B2b 1、2、4、8、11~13、18、31~33、35、37、43、44、50、53、59、66、68、69、72~74、77、79、82~84、91、93、98、102、104、107、109、116、122、124~126、128、132、133、135、136、139、141、143、144、147、148、150、151、153 38、48、112、149
色泽
Color
Ppo-A1b 2~10、12~17、19~24、26、27、31、32、34、36~38、40、43、44、46、50~53、55、56、60、62、63、66、69、70、72、73、75~80、82、83、85~87、89、91~94、96、98、100、103、104、106~111、114~118、121、122、125、127~148、150、151、153 1、11、18、25、28~30、33、35、39、41、42、45、47~49、54、57~59、61、64、65、67、68、71、74、81、84、88、90、95、97、99、101、102、105、112、113、119、120、123、124、126、149、152
Ppo-D1a 2、3、8、12、22、26、40、54、62、77、109
Psy-A1b 7、14、17、20、23、26、29、33、39、41、45、47、54、55、57、59、61、69、70、72、75、80、82、86、92、93、96、97、102、111、115~117、119、123、126~128、132、134、137、145、
Psy-B1aPsy-B1b 19、25、28、52、60、94、99、100、111、114、120、130、140、145
TaZds-A1a 2、5、14、27、32、35、40、45、49、50、66、72、73、79、82、
83、89、90、103、106、122、132、137
13、29、58、63、67、68、96、112
Lox-B1b 1~25、27~33、35~38、40~49、51~56、58、60、61、63~65、67~
71、74、76、80、81、84、87、88、90~96、99~105、109~116、119、120、123、125、133~136、138~153
TaLyc-B1a 2、4~9、11、12、14、15、18、20、23、25~27、30、31、34、36、38、40、41、43~45、47、48、50、51~57、59~61、64~
66、69~73、79~83、86、88~90、92~96、98~103、106~111、113~118、120~123、125~130、132~148、151~153
3、29、37、39、49、58、67、76、78、112
TaPds-B1b 19、26、31、33、35、37、39、42、51、55、64、70、75、80、81、85、86、88、92、93、97、104、106、108、115~118、123、127、129、130、135、138、143、146、151~153 29、49、54、65、119、139、149
TaPod-A1b 1、7、8、11、12、19、26、34、35、40、49、58、62、64、67、73、83、87、91、92、99、103、104、106、110、112、120~
122、128、132、135、137、138、143、146、147、150、151
29、32、33、44、48、53、65、79、90、95、96、109、118、125、133、136、139、141、144、148、149

表3

优异等位变异年代分布

性状Trait 优异单倍型
Favourable
haplotype
1970-1979 1980-1989 1990-1999 2000-2009 2010-2018
数目
Number
频率
Frequency
(%)
数目
Number
频率
Frequency
(%)
数目
Number
频率
Frequency
(%)
数目
Number
频率
Frequency
(%)
数目
Number
频率
Frequency
(%)
黑麦易位系
Rye translocation line
1RS/1BL 0 0.00 7 29.17 14 60.87 31 50.00 14 40.00
1RS/1AL 0 0.00 2 8.33 1 4.35 11 17.74 0 0.00
高分子量
谷蛋白亚基
High molecular
weight glutenin
subunits
Glu-Ax1 5 55.56 10 41.67 9 39.13 18 29.03 18 51.43
Glu-Ax2* 2 22.22 6 25.00 4 17.39 6 9.68 0 0.00
Bx7OE 1 11.11 1 4.17 0 0.00 1 1.61 0 0.00
Bx13 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
1Dx5+1Dy10 0 0.00 0 0.00 3 13.04 12 19.35 5 14.29
籽粒硬度
Kernel hardness
Pina-D1b 0 0.00 0 0.00 1 4.35 5 8.06 3 8.57
Pinb-D1b 4 44.44 15 62.50 13 56.52 50 80.65 26 74.29
Pinb-B2b 4 44.44 7 29.17 6 26.09 20 32.26 18 51.43
色泽
Color
Ppo-A1b 8 88.89 17 70.83 14 60.87 40 64.52 28 80.00
Ppo-D1a 3 33.33 3 12.50 2 8.70 3 4.84 0 0.00
Psy-A1b 1 11.11 7 29.17 6 26.09 19 30.65 9 25.71
Psy-B1aPsy-B1b 0 0.00 3 12.50 1 4.35 6 9.68 4 11.43
Psy-D1a 9 100.00 24 100.00 23 100.00 62 100.00 35 100.00
TaZds-A1a 2 22.22 3 12.50 5 21.74 10 16.13 3 8.57
Lox-B1a 9 100.00 23 95.83 20 86.96 40 64.52 24 68.57
TaLyc-B1b 7 77.78 12 50.00 17 73.91 44 70.97 30 85.71
TaPds-B1b 0 0.00 4 16.67 6 26.09 18 29.03 11 31.43
TaPod-A1b 3 33.33 4 16.67 4 17.39 15 24.19 13 37.14
[1] Altenbach S, Chang H C, Yu X , et al. Elimination of omega-1,2 gliadins from bread wheat (Triticum aestivum) flour: effects on immunogenic potential and end-use quality. Frontiers in Plant Science, 2019,10:580-591.
[2] Geng H, Shi J, Fuerst E , et al. Physical mapping of peroxidase genes and development of functional markers for TaPod-D1 on bread wheat chromosome 7D. Frontiers in Plant Science, 2019,10:523-535.
[3] Chaudhary N, Dangi P, Khatkar B S . Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread. Food Chemistry, 2016,210:325-331.
[4] Ren T H, Chen F, Zou Y T , et al. Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome, 2011,54(4):316-326.
[5] Korzun V . About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breeding, 2010,116(6):537-540.
[6] Lelley T, Eder C, Grausgruber H . Influence of 1BL.1RS wheat-rye chromosome translocation on genotype by environment interaction. Journal of Cereal Science, 2004,39(3):313-320.
[7] Graybosch R A . Mini Review: Uneasy Unions: Quality effects of rye chromatin transfers to wheat. Journal of Cereal Science, 2001,33(1):3-16.
[8] Moreno-Sevilla B, Baenziger P S, Shelton D R , et al. Agronomic performance and end-use quality of 1B vs. 1BL/1RS genotypes derived from winter wheat ‘Rawhide’. Crop Science, 1995,35(6):1607-1612.
[9] Burnett C J, Lorenz K J, Carver B F . Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica, 1995,86(3):159-166.
[10] Carver B F . Comparison of related wheat stocks possesing 1B or T1BL·1RS schromosomes: grain and flour quality. Crop Science, 1995,35(5):1316-1321.
[11] Hussain A, Lukow O M . Characterization of the 1B/1R translocation in wheat using water extractable protein concentrate. Euphytica, 1994,78(1/2):109-113.
[12] Graybosch R A, Peterson C J, Hansen L E , et al. Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocation lines. Journal of Cereal Science, 1993,17(2):95-106.
[13] Li Z, Ren T, Yan B , et al. A mutant with expression deletion of gene Sec-1 in a 1RS.1BL line and its effect on production quality of wheat. PLoS ONE, 2016,11(1):e0146943.
[14] Payne P I, Law C N, Mudd E E . Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin,a major protein of wheat endosperm. Theoretical and Applied Genetics, 1980,58(3/4):113-120.
[15] Payne P I, Holt L M, Krattiger A F , et al. Relationships between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain. Journal of Cereal Science, 1988,7(3):229-235.
[16] He Z, Liu L, Xia X , et al. Composition of HMW and LMW glutenin subunits and their effects on dough properties,pan bread,and noodle quality of Chinese bread wheats. Cereal Chemistry, 2005,82(4):345-350.
[17] Payne P I, Holt L M, Law C N . Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin: Part 1: Allelic variation in subunits amongst varieties of wheat (Triticum aestivum). Theoretical and Applied Genetics, 1981,60(4):229-236.
[18] Vázquez D, Berger A G, Cuniberti M , et al. Influence of cultivar and environment on quality of Latin American wheats. Journal of Cereal Science, 2012,56(2):196-203.
[19] Peña E, Bernardo A, Soler C , et al. Relationship between common wheat (Triticum aestivum L.) gluten proteins and dough rheological properties. Euphytica, 2005,143(1/2):169-177.
[20] Liu W, Zhang Y Z, Gao X , et al. Comparative proteome analysis of glutenin synthesis and accumulation in developing grains between superior and poor quality bread wheat cultivars. Journal of the Science of Food and Agriculture, 2011,92(1):106-115.
[21] Figueroa J D C, Maucher T, Reule W , et al. Influence of high molecular weight glutenins on viscoelastic properties of intact wheat kernel and relation to functional properties of wheat dough. Cereal Chemistry, 2009,86(2):139-144.
[22] Hernández-Estrada Z J, Rayas-Duarte P, Cárdenas J d D F . Creep recovery of wet gluten and high-molecular-weight glutenin subunit composition: relationship with viscoelasticity of dough and breadmaking quality of hard red winter wheat. Cereal Chemistry, 2017,94(2):223-229.
[23] Wang X L, Zhang Y Q, Zhang B , et al. Comparison of quality properties between HMW-GSs 5+10 and 2+12 NILs under three common wheat genetic backgrounds. Cereal Chemistry, 2018,95(4):575-583.
[24] Ma X L, Sajjad M, Wang J , et al. Diversity,distribution of puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017,17(1):158-169.
[25] Bhave M, Morris C F . Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology, 2008,66(3):205-219.
[26] Qamar Z U, Bansal U K, Chong M D , et al. Detection of puroindoline (Pina-D1 and Pinb-D1) allelic variation in wheat landraces. Journal of Cereal Science, 2014,60(3):610-616.
[27] Catherine R, Mireille D, Fanny L , et al. Improving the yellow pigment content of bread wheat flour by selecting;the three homoeologous copies of Psy1. Molecular Breeding, 2013,31(1):87-99.
[28] Harjes C E, Rocheford T R, Ling B , et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008,319(5861):330-333.
[29] Leenhardt F, Lyan B, Rock E , et al. Genetic variability of carotenoid concentration,and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. European Journal of Agronomy, 2006,25(2):170-176.
[30] He X Y, He Z H, Zhang L P , et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics, 2007,115(1):47-58.
[31] Rasheed A, Wen W, Gao F , et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016,129(10):1843-1860.
[32] Gupta P K, Kumar J, Mir R R , et al. Marker-assisted selection as a component of conventional plant breeding. Plant Breeding Reviews, 2010(23):145-217.
[33] Andersen J R, Lübberstedt T . Functional markers in plants. Trends in Plant Science, 2003,8(11):554-560.
[34] Lau W C P, Rafii M Y, Ismail M R , et al. Review of functional markers for improving cooking,eating,and the nutritional qualities of rice. Frontiers in Plant Science, 2015,6:832-842.
[35] 杨子博, 顾正中, 周羊梅 , 等. 江苏淮北地区小麦品种资源籽粒硬度基因等位变异的KASP检测. 麦类作物学报, 2017,37(2):153-161.
[36] 韩小东, 张荣志, 宋国琦 , 等. Fhb1基因不同等位变异在小麦品种资源中的分布. 山东农业科学, 2018,50(8):1-6.
[37] 桑大军, 许为钢, 胡琳 , 等. 河南省小麦品种白粉病抗性基因的分子鉴定及分子标记辅助育种. 华北农学报, 2006,21(1):86-91.
[38] 张勇, 申小勇, 张文祥 , 等. 高分子量谷蛋白5+10亚基和1B/1R易位分子标记辅助选择在小麦品质育种中的应用. 作物学报, 2012,38(10):1743-1751.
[39] 程斌, 辛智海, 高旭 , 等. 贵州糯质小麦的分子标记辅助育种研究. 种子, 2017,36(12):39-43.
[40] Bradbury L M, Fitzgerald T L, Henry R J , et al. The gene for fragrance in rice. Plant Biotechnology Journal, 2010,3(3):363-370.
[1] 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应[J]. 作物杂志, 2020, (4): 127–134
[2] 曹昌林, 吕慧卿, 郝志萍, 高翔, 周忠宇. 叶面喷施锌、硼肥对晋荞麦(苦)5号产量和品质的影响[J]. 作物杂志, 2020, (4): 135–142
[3] 范园园, 吴海梅, 逄蕾, 路建龙, 夏博文, 杨旭海. 基于Meta分析评价秸秆覆盖对我国北方半干旱区不同生态区域小麦产量的影响[J]. 作物杂志, 2020, (4): 143–149
[4] 刘东军, 宋维富, 杨雪峰, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏. 小麦Fhb1基因定位、克隆及其在抗赤霉病育种中利用的研究进展[J]. 作物杂志, 2020, (4): 16–20
[5] 杨永青, 高芳芳, 马亚君, 陈鑫, 张杰. 山西省旱作农业区不同施肥处理对谷子产量、品质及经济效益的影响[J]. 作物杂志, 2020, (4): 195–201
[6] 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206–210
[7] 杨子光, 郭利磊, 张珂, 孙军伟, 孟丽梅. 黄淮旱地冬小麦主要性状演变规律研究[J]. 作物杂志, 2020, (4): 30–36
[8] 王中秋, 应鹏飞, 陈梦涛, 贺琼颖, 胡鑫. 普通小麦-野生二粒小麦染色体臂置换系籽粒与品质性状分析[J]. 作物杂志, 2020, (4): 37–44
[9] 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究[J]. 作物杂志, 2020, (4): 45–52
[10] 陈卫国, 张政, 史雨刚, 曹亚萍, 王曙光, 李宏, 孙黛珍. 211份小麦种质资源抗旱性的评价[J]. 作物杂志, 2020, (4): 53–
[11] 徐园园, 赵鹏, 洪权春, 朱晓琴, 裴冬丽. 小麦转录因子基因TaMYB70的分离和表达分析[J]. 作物杂志, 2020, (4): 84–90
[12] 朱正斌, 杨勇, 冯琳皓, 陆彦, 沈雪林, 刘巧泉, 张昌泉. 太湖地区地方特色糯稻品种鸭血糯和苏御糯稻米理化特性研究[J]. 作物杂志, 2020, (4): 91–98
[13] 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102–108
[14] 田玉聪, 段门俊, 朱杰, 冯香诏, 高珍珍, 刘章勇, 陈阜, 金涛. 气象条件对优质再生稻米形成的影响[J]. 作物杂志, 2020, (3): 125–131
[15] 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响[J]. 作物杂志, 2020, (3): 142–148
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!