作物杂志,2020, 第4期: 6471 doi: 10.16035/j.issn.1001-7283.2020.04.009
单子龙(), 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤()
Shan Zilong(), Ban Jinfu, Zhao Yankun, Cao Qiao, Tian Guoying, He Mingqi, Gao Zhenxian()
摘要:
为了加速小麦品质改良,利用高通量KASP标记检测1970年以来河北省审定的小麦品种153份,这些功能标记包括检测1RS/1BL和1RS/1AL易位系、高分子量麦谷蛋白亚基、籽粒硬度、提高籽粒蛋白含量和促进直链淀粉合成,以及与籽粒品质颜色相关基因的KASP标记,共计22个。结果表明,1RS/1BL和1RS/1AL易位系占比分别是43.14%和9.15%;5个标记检测高分子量麦谷蛋白亚基,Glu-A1位点Glu-Ax1和Ax2*亚基占比分别是39.22%和11.76%,Glu-B1位点Bx7OE亚基占比1.96%,Glu-D1位点1Dx5+1Dy10亚基占比13.07%。3个标记检测小麦籽粒硬度基因,Pina-D1b、Pinb-D1b和Pinb-B2b等位变异,占比分别是5.88%、70.59%和35.95%;没有检测到与提高籽粒蛋白含量和促进直链淀粉合成有关的基因Gpc-B1和Wx-B1的优异等位变异;检测了10个与籽粒品质颜色有关的基因Ppo-A1、Ppo-D1、Psy-A1、Psy-B1、Psy-D1/Sr25、Zds-A1、Lox-B1、TaLyc-B1、TaPds-B1和TaPod-A1,优异等位变异占比分别是69.93%、7.19%、27.45%、9.15%、100.00%、15.03%、75.82%、71.90%、25.49%和25.49%,其中Ppo-D1位点的优异等位变异呈逐年下降的趋势。综上所述,KASP标记可高效检测小麦品质相关基因的优异等位变异,在河北省小麦品质改良中有很好的应用前景。
[1] | Altenbach S, Chang H C, Yu X , et al. Elimination of omega-1,2 gliadins from bread wheat (Triticum aestivum) flour: effects on immunogenic potential and end-use quality. Frontiers in Plant Science, 2019,10:580-591. |
[2] | Geng H, Shi J, Fuerst E , et al. Physical mapping of peroxidase genes and development of functional markers for TaPod-D1 on bread wheat chromosome 7D. Frontiers in Plant Science, 2019,10:523-535. |
[3] | Chaudhary N, Dangi P, Khatkar B S . Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread. Food Chemistry, 2016,210:325-331. |
[4] | Ren T H, Chen F, Zou Y T , et al. Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome, 2011,54(4):316-326. |
[5] | Korzun V . About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breeding, 2010,116(6):537-540. |
[6] | Lelley T, Eder C, Grausgruber H . Influence of 1BL.1RS wheat-rye chromosome translocation on genotype by environment interaction. Journal of Cereal Science, 2004,39(3):313-320. |
[7] | Graybosch R A . Mini Review: Uneasy Unions: Quality effects of rye chromatin transfers to wheat. Journal of Cereal Science, 2001,33(1):3-16. |
[8] | Moreno-Sevilla B, Baenziger P S, Shelton D R , et al. Agronomic performance and end-use quality of 1B vs. 1BL/1RS genotypes derived from winter wheat ‘Rawhide’. Crop Science, 1995,35(6):1607-1612. |
[9] | Burnett C J, Lorenz K J, Carver B F . Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica, 1995,86(3):159-166. |
[10] | Carver B F . Comparison of related wheat stocks possesing 1B or T1BL·1RS schromosomes: grain and flour quality. Crop Science, 1995,35(5):1316-1321. |
[11] | Hussain A, Lukow O M . Characterization of the 1B/1R translocation in wheat using water extractable protein concentrate. Euphytica, 1994,78(1/2):109-113. |
[12] | Graybosch R A, Peterson C J, Hansen L E , et al. Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocation lines. Journal of Cereal Science, 1993,17(2):95-106. |
[13] | Li Z, Ren T, Yan B , et al. A mutant with expression deletion of gene Sec-1 in a 1RS.1BL line and its effect on production quality of wheat. PLoS ONE, 2016,11(1):e0146943. |
[14] | Payne P I, Law C N, Mudd E E . Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin,a major protein of wheat endosperm. Theoretical and Applied Genetics, 1980,58(3/4):113-120. |
[15] | Payne P I, Holt L M, Krattiger A F , et al. Relationships between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain. Journal of Cereal Science, 1988,7(3):229-235. |
[16] | He Z, Liu L, Xia X , et al. Composition of HMW and LMW glutenin subunits and their effects on dough properties,pan bread,and noodle quality of Chinese bread wheats. Cereal Chemistry, 2005,82(4):345-350. |
[17] | Payne P I, Holt L M, Law C N . Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin: Part 1: Allelic variation in subunits amongst varieties of wheat (Triticum aestivum). Theoretical and Applied Genetics, 1981,60(4):229-236. |
[18] | Vázquez D, Berger A G, Cuniberti M , et al. Influence of cultivar and environment on quality of Latin American wheats. Journal of Cereal Science, 2012,56(2):196-203. |
[19] | Peña E, Bernardo A, Soler C , et al. Relationship between common wheat (Triticum aestivum L.) gluten proteins and dough rheological properties. Euphytica, 2005,143(1/2):169-177. |
[20] | Liu W, Zhang Y Z, Gao X , et al. Comparative proteome analysis of glutenin synthesis and accumulation in developing grains between superior and poor quality bread wheat cultivars. Journal of the Science of Food and Agriculture, 2011,92(1):106-115. |
[21] | Figueroa J D C, Maucher T, Reule W , et al. Influence of high molecular weight glutenins on viscoelastic properties of intact wheat kernel and relation to functional properties of wheat dough. Cereal Chemistry, 2009,86(2):139-144. |
[22] | Hernández-Estrada Z J, Rayas-Duarte P, Cárdenas J d D F . Creep recovery of wet gluten and high-molecular-weight glutenin subunit composition: relationship with viscoelasticity of dough and breadmaking quality of hard red winter wheat. Cereal Chemistry, 2017,94(2):223-229. |
[23] | Wang X L, Zhang Y Q, Zhang B , et al. Comparison of quality properties between HMW-GSs 5+10 and 2+12 NILs under three common wheat genetic backgrounds. Cereal Chemistry, 2018,95(4):575-583. |
[24] | Ma X L, Sajjad M, Wang J , et al. Diversity,distribution of puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017,17(1):158-169. |
[25] | Bhave M, Morris C F . Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology, 2008,66(3):205-219. |
[26] | Qamar Z U, Bansal U K, Chong M D , et al. Detection of puroindoline (Pina-D1 and Pinb-D1) allelic variation in wheat landraces. Journal of Cereal Science, 2014,60(3):610-616. |
[27] | Catherine R, Mireille D, Fanny L , et al. Improving the yellow pigment content of bread wheat flour by selecting;the three homoeologous copies of Psy1. Molecular Breeding, 2013,31(1):87-99. |
[28] | Harjes C E, Rocheford T R, Ling B , et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008,319(5861):330-333. |
[29] | Leenhardt F, Lyan B, Rock E , et al. Genetic variability of carotenoid concentration,and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. European Journal of Agronomy, 2006,25(2):170-176. |
[30] | He X Y, He Z H, Zhang L P , et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics, 2007,115(1):47-58. |
[31] | Rasheed A, Wen W, Gao F , et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016,129(10):1843-1860. |
[32] | Gupta P K, Kumar J, Mir R R , et al. Marker-assisted selection as a component of conventional plant breeding. Plant Breeding Reviews, 2010(23):145-217. |
[33] | Andersen J R, Lübberstedt T . Functional markers in plants. Trends in Plant Science, 2003,8(11):554-560. |
[34] | Lau W C P, Rafii M Y, Ismail M R , et al. Review of functional markers for improving cooking,eating,and the nutritional qualities of rice. Frontiers in Plant Science, 2015,6:832-842. |
[35] | 杨子博, 顾正中, 周羊梅 , 等. 江苏淮北地区小麦品种资源籽粒硬度基因等位变异的KASP检测. 麦类作物学报, 2017,37(2):153-161. |
[36] | 韩小东, 张荣志, 宋国琦 , 等. Fhb1基因不同等位变异在小麦品种资源中的分布. 山东农业科学, 2018,50(8):1-6. |
[37] | 桑大军, 许为钢, 胡琳 , 等. 河南省小麦品种白粉病抗性基因的分子鉴定及分子标记辅助育种. 华北农学报, 2006,21(1):86-91. |
[38] | 张勇, 申小勇, 张文祥 , 等. 高分子量谷蛋白5+10亚基和1B/1R易位分子标记辅助选择在小麦品质育种中的应用. 作物学报, 2012,38(10):1743-1751. |
[39] | 程斌, 辛智海, 高旭 , 等. 贵州糯质小麦的分子标记辅助育种研究. 种子, 2017,36(12):39-43. |
[40] | Bradbury L M, Fitzgerald T L, Henry R J , et al. The gene for fragrance in rice. Plant Biotechnology Journal, 2010,3(3):363-370. |
[1] | 秦鸿德, 荣义华, 黄晓莉, 胡爱兵, 周家华, 闫显会, 李蔚, 张贤红, 李洪菊, 杨国正. 简化施肥夏直播棉对密度和氮肥的响应[J]. 作物杂志, 2020, (4): 127134 |
[2] | 曹昌林, 吕慧卿, 郝志萍, 高翔, 周忠宇. 叶面喷施锌、硼肥对晋荞麦(苦)5号产量和品质的影响[J]. 作物杂志, 2020, (4): 135142 |
[3] | 范园园, 吴海梅, 逄蕾, 路建龙, 夏博文, 杨旭海. 基于Meta分析评价秸秆覆盖对我国北方半干旱区不同生态区域小麦产量的影响[J]. 作物杂志, 2020, (4): 143149 |
[4] | 刘东军, 宋维富, 杨雪峰, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏. 小麦Fhb1基因定位、克隆及其在抗赤霉病育种中利用的研究进展[J]. 作物杂志, 2020, (4): 1620 |
[5] | 杨永青, 高芳芳, 马亚君, 陈鑫, 张杰. 山西省旱作农业区不同施肥处理对谷子产量、品质及经济效益的影响[J]. 作物杂志, 2020, (4): 195201 |
[6] | 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206210 |
[7] | 杨子光, 郭利磊, 张珂, 孙军伟, 孟丽梅. 黄淮旱地冬小麦主要性状演变规律研究[J]. 作物杂志, 2020, (4): 3036 |
[8] | 王中秋, 应鹏飞, 陈梦涛, 贺琼颖, 胡鑫. 普通小麦-野生二粒小麦染色体臂置换系籽粒与品质性状分析[J]. 作物杂志, 2020, (4): 3744 |
[9] | 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究[J]. 作物杂志, 2020, (4): 4552 |
[10] | 陈卫国, 张政, 史雨刚, 曹亚萍, 王曙光, 李宏, 孙黛珍. 211份小麦种质资源抗旱性的评价[J]. 作物杂志, 2020, (4): 53 |
[11] | 徐园园, 赵鹏, 洪权春, 朱晓琴, 裴冬丽. 小麦转录因子基因TaMYB70的分离和表达分析[J]. 作物杂志, 2020, (4): 8490 |
[12] | 朱正斌, 杨勇, 冯琳皓, 陆彦, 沈雪林, 刘巧泉, 张昌泉. 太湖地区地方特色糯稻品种鸭血糯和苏御糯稻米理化特性研究[J]. 作物杂志, 2020, (4): 9198 |
[13] | 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102108 |
[14] | 田玉聪, 段门俊, 朱杰, 冯香诏, 高珍珍, 刘章勇, 陈阜, 金涛. 气象条件对优质再生稻米形成的影响[J]. 作物杂志, 2020, (3): 125131 |
[15] | 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响[J]. 作物杂志, 2020, (3): 142148 |
|