作物杂志,2021, 第1期: 32–37 doi: 10.16035/j.issn.1001-7283.2021.01.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

小麦4B染色体上LOX基因的等位变异及其区域分布

王黎明1,2(), 孔维玮1(), 高华利1,3, 董普辉1, 闫雪芳1, 王春平1, 王洪刚2, 李兴锋2()   

  1. 1河南科技大学农学院,471003,河南洛阳
    2山东农业大学农学院/作物生物学国家重点实验室,271018,山东泰安
    3河南省黄泛区农场,466000,河南周口
  • 收稿日期:2020-04-14 修回日期:2020-05-14 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 李兴锋
  • 作者简介:王黎明,主要从事小麦种质创新与分子育种工作,E-mail: lmwang1@163.com|孔维玮为共同第一作者,研究方向为小麦种质创新与分子育种,E-mail: 1203879469@qq.com
  • 基金资助:
    国家自然科学基金-河南联合基金(U1304318);国家自然科学基金-河南联合基金(U1904108);河南省科技攻关项目(202102110022)

Allelic Variations of Lipoxygenase (LOX) Activity Genes on Chromosome 4B and Distributions in Different Wheat Regions of China

Wang Liming1,2(), Kong Weiwei1(), Gao Huali1,3, Dong Puhui1, Yan Xuefang1, Wang Chunping1, Wang Honggang2, Li Xingfeng2()   

  1. 1Agronomy College, Henan University of Science and Technology, Luoyang 471003, Henan, China
    2Agronomy College, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an 271018, Shandong, China
    3Huangfanqu Farm in Henan Province, Zhoukou 466000, Henan, China
  • Received:2020-04-14 Revised:2020-05-14 Online:2021-02-15 Published:2021-02-23
  • Contact: Li Xingfeng

摘要:

为了解中国不同麦区小麦种质资源籽粒脂肪氧化酶(lipoxygenase,LOX)活性相关基因TaLox-B1的差异和分布,利用小麦4B染色体上的功能标记LOX16LOX18对7个麦区的436份种质资源进行分子检测。结果表明:在供试材料中共检测到3种TaLox-B1基因等位变异类型,分别为TaLox-B1a(与高LOX活性相关)、TaLox-B1b(与低LOX活性相关)和杂合型,其频率分别为19.0%、70.4%和10.6%。小麦LOX活性基因不同变异类型在各生态区的分布存在明显差异:基因型TaLox-B1a在黄淮冬麦区、北部冬麦区和长江中下游冬麦区分布较多,其比例分别为21.1%、19.8%和17.6%;基因型TaLox-B1b在西南冬麦区和长江中下游冬麦区分布较多,比例分别为87.9%、72.5%;杂合型仅存在于北部冬麦区、黄淮冬麦区与长江中下游冬麦区,比例分别为14.2%、12.4%和9.8%。利用标记LOX16LOX18对53个自选高代品系进行分子检测,发现自选品系仅有TaLox-B1b与杂合型两种基因型,其中基因型TaLox-B1ab有32个,比例为60.4%。采用分子标记辅助选择,有利于快速鉴定小麦籽粒LOX活性,加速LOX的遗传改良和新品种选育。

关键词: 普通小麦, LOX, 麦区, 功能标记, MAS

Abstract:

In order to identify distributions of genes for the lipoxygenase (LOX) activity of grains in different wheat regions in China, 436 wheat cultivars (lines) from seven wheat regions were genotyped by the functional markers LOX16 and LOX18 on the chromosome of 4B. The results showed that: TaLox-B1 had three allelic variations detected by the LOX16 and LOX18: TaLox-B1a (related to higher LOX activity), TaLox-B1b (related to lower LOX activity) and heterozygous type (related to intermediate type, moderate LOX activity), with frequencies of 19.0%, 70.4% and 10.6%, respectively. There were significant differences in the distribution of LOX activity genes among genotypes in different wheat regions. Wheat germplasms with the genotype TaLox-B1a were mostly distributed in the Huang-huai winter wheat region (HHR), Northern winter wheat region (NR) and Yangtze River middle-lower reaches winter wheat region (YMR), with the ratios of 21.1%, 19.8% and 17.6%, respectively. Wheat germplasms with the genotype of TaLox-B1b were mostly distributed in the Southwestern winter wheat region (SWR) and YMR, with the ratios of 87.9% and 72.5%, respectively. Heterozygous type was only found in NR, HHR and YMR, with the ratios of 14.2%, 12.4% and 9.8%, respectively. The markers LOX16 and LOX18 were further used to test LOX genotypes of 53 lines from our breeding program. The results showed that there were only two genotypes of TaLox-B1b and heterozygous type in 53 lines. Among them, 32 lines with heterozygous type in a proportion of 60.4%. Molecular marker-assisted selection was beneficial to the genetic improvement of LOX activity and breeding new wheat varieties.

Key words: Common wheat, LOX, Wheat region, Functional marker, MAS

表1

供试小麦品种(系)及其麦区分布情况

代码
Code
麦区
Wheat region
品种(系)数
Wheat collection
黄淮冬麦区 209
北部冬麦区 106
西南冬麦区 58
长江中下游冬麦区 51
青藏春冬麦区 3
东北春麦区 4
西北春麦区 5
自选Self-selection 河南洛阳 53

表2

小麦4B染色体上LOX基因功能标记及其引物序列

标记Marker 引物序列(5′-3′) Primer sequence (5′-3′) 扩增片段Amplified fragment (bp) 目标等位变异Targeted allele
LOX16 F: CCATGACCTGATCCTTCCCTT 489 TaLox-B1a
R: GCGCGGATAGGGGTGGT
LOX18 F: ACGATGTGAGTTGTGACTTGTG 791 TaLox-B1b
R: GCGCGGATAGGGGTGC

图1

标记LOX16检测不同麦区部分小麦品种(系)TaLox-B1等位变异 M:DL2000 marker;1:中国春;2:小偃22;3:西农126;4:西农177;5:小偃22-3;6:西农291;7:小偃135A;8:小偃81;9:西农88;10:西农2000;11:西农B22;12:西农2611

图2

标记LOX18检测不同麦区部分小麦品种(系)TaLox-B1等位变异 M:DL2000 marker;1:中国春;2:济南17;3:济麦19;4:济麦20;5:济麦21;6:济麦22;7:轮选987;8:泰农142;9:泰山21;10:泰山23;11:山农267;12:潍麦8号2.2 不同生态区小麦LOX基因等位变异的区域分布

表3

不同麦区小麦TaLox-B1等位变异的分子检测

基因型Genotype 项目Item 麦区Wheat region 品种(系)数
No. of cultivars (lines)
频率
Frequency (%)
TaLox-B1a 品种(系)数 44 21 7 9 0 2 0 83
频率Frequency (%) 21.1 19.8 12.1 17.6 0.0 50.0 0.0 19.0
TaLox-B1b 品种(系)数 139 70 51 37 3 2 5 307
频率Frequency (%) 66.5 66.0 87.9 72.5 100.0 50.0 100.0 70.4
杂合型 Heterozygous type 品种(系)数 26 15 0 5 0 0 0 46
频率Frequency (%) 12.4 14.2 0.0 9.8 0.0 0.0 0.0 10.6
合计Total 品种(系)数 209 106 58 51 3 4 5 436
频率Frequency (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
[1] 郑文寅. 小麦籽粒LOX活性的遗传变异和STS标记开发. 合肥:安徽农业大学, 2014.
[2] Siedow J N. Plant lipoxygenase,structure and function. Annual Review of Plant Physiology and Plant Molecular Biology, 1991,42(1):145-188.
doi: 10.1146/annurev.pp.42.060191.001045
[3] Rosahl S. Lipoxygenases in plants -their role in development and stress response. Zeitschrift für Naturforschung C-A. Journal of Biosciences, 1996,51(3/4):123-138.
[4] Brash A R. Lipoxygenases, occurrence,functions,catalysis,and acquisition of substrate. Journal of Biological Chemistry, 1999,274(34):23679-23682.
doi: 10.1074/jbc.274.34.23679
[5] 牟艺菲. 小麦OPRLOX基因家族的鉴定及其抗逆功能分析. 杨凌:西北农林科技大学, 2019.
[6] Feussner I, Wasternack C. The Lipoxygenase pathway. Annual Review of Plant Biology, 2002,53(1):275-297.
[7] Mosblech A, Feussner I, Heilmann I. Oxylipins,structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry, 2009,47(6):511-517.
pmid: 19167233
[8] 郑文寅, 汪帆, 司红起, 等. 普通小麦籽粒LOX、PPO活性和类胡萝卜素含量变异及对全麦粉色泽的影响. 中国农业科学, 2013,46(6):1087-1094.
doi: 10.3864/j.issn.0578-1752.2013.06.001
[9] Geng H W, Xia X C, Zhang L P, et al. Development of functional markers for alipoxygenase gene TaLox-B1 on chromosome 4BS in common wheat. Crop Science, 2012,52(2):568-576.
doi: 10.2135/cropsci2011.07.0365
[10] 吴萍. 小麦籽粒脂肪氧化酶活性功能标记的开发与应用. 合肥:安徽农业大学, 2013.
[11] Leenhardt F, Lyan B, Rock E, et al. Genetic variability of carotenoid concentration,and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. European Journal of Agronomy, 2006,25(2):170-176.
doi: 10.1016/j.eja.2006.04.010
[12] Irvine G N, Winkler C A, Anderson J A. Factors affecting the color of macaroni. III. Varietal differences in the rate of pigment destruction during mixing. Cereal Chemistry, 1950,27:205-218.
[13] 李浪. 小麦面粉品质改良与检测技术. 北京: 化学工业出版社, 2008.
[14] 孙道杰, 何中虎, 王辉. 小麦面粉黄色素相关基因研究. 西北植物学报, 2006,26(4):7-12.
[15] Borrelli G M, Troccoli A, Di Fonzo N, et al. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chemistry, 1999,76(3):335-340.
doi: 10.1094/CCHEM.1999.76.3.335
[16] Borrelli G M, De Leonardis A M, Fares C, et al. Effects of modified processing conditions on oxidative properties of semolina dough and pasta. Cereal Chemistry, 2003,80(2):225-231.
doi: 10.1094/CCHEM.2003.80.2.225
[17] Bao X T, Zhuansun X X, Zheng W Y, et al. Lipoxygenase activity and its relationship with traits of whole-mill color in wheat. Agricultural Science and Technology, 2016,17(10):2242-2246,2255.
[18] 王慧, 郑文寅, 樊宏, 等. 不同小麦品种籽粒中LOX活性及基因型和环境互作分析. 中国粮油学报, 2011,26(1):11-14,19.
[19] Trufanov V A, Permyakova M D, Pshenichnikova T A, et al. The effect of intercultivar substitution of wheat Triticum aestivum L. chromosomes on lipoxygenase activity and its correlation with the technological properties of flour. Applied Biochemistryand Microbiology, 2007,43(1):91-97.
[20] Yonekura L, Nagao A. Intestinal absorption of dietary carotenoids. Molecular Nutrition and Food Research, 2007,51(1):107-115
doi: 10.1002/mnfr.200600145 pmid: 17195263
[21] Tourniaire F, Gouranton E, von Lintig J, et al. β-Carotene conversion products and their effects on adipose tissue. Genes and Nutrition, 2009,4:179-187.
doi: 10.1007/s12263-009-0128-3 pmid: 19557453
[22] Ziegler R G. A Review of epidemiologic evidence that carotenoids reduce the risk of cancer. The Journal of Nutrition, 1989,119(1):116-122
doi: 10.1093/jn/119.1.116 pmid: 2643694
[23] Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell and Environment, 2006,29(3):435-445.
doi: 10.1111/pce.2006.29.issue-3
[24] Carpentier S, Knaus M, Suh M. Associations between lutein,zeaxanthin,and age-related macular degeneration,an overview. Critical Reviews in Food ence and Nutrition, 2009,49(4):313-326.
[25] Liu X L, Li B B, Guo L J, et al. Analysis of seed storage-tolerance of wheat (Triticum aestivum) lipoxygenase RNAi transgenic lines. Journal of Agricultural Biotechnology, 2016,24(7):987-996.
[26] Geng H W, Zhang Y, He Z H, et al. Molecular markers for tracking variation in lipoxygenase activity in wheat breeding. Molecular Breeding, 2011,28(1):117-126.
doi: 10.1007/s11032-010-9466-5
[27] Feng B, Dong Z Y, Xu Z B, et al. Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. Journal of Cereal Science, 2010,52(3):387-394.
doi: 10.1016/j.jcs.2010.06.019
[28] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[29] 王黎明, 李永霞, 高华利, 等. 小麦穗发芽活性基因等位变异及其区域分布研究. 西北植物学报, 2019,39(1):52-58.
[30] 相吉山, 穆培源, 桑伟, 等. 新疆小麦品种资源脂肪氧化酶活性基因TaLox-B1的分布特征研究. 麦类作物学报, 2013,33(2):279-285.
doi: 10.7606/j.issn.1009-1041.2013.02.012
[31] 张钰玉, 王晓龙, 张晓科, 等. 陕西小麦品种(系)脂肪氧化酶活性基因的遗传多样性分析. 麦类作物学报, 2012,32(4):616-621.
doi: 10.7606/j.issn.1009-1041.2012.04.004
[32] 曹东, 张雪婷, 王世红, 等. 104份甘肃小麦品种脂肪氧化酶和多酚氧化酶活性基因等位变异的检测. 麦类作物学报, 2014,34(4):467-473.
[33] Bai L, Yu F X, Yaseng R, et al. Molecular identification and distribution of TaLox-B1,TaLox-B2 and TaLox-B3 loci in Xinjiang wheat cultivars. Journal of Triticeae Crops, 2016,36(11):1456-1463.
[34] 张福彦, 陈锋, 程仲杰, 等. 小麦TaLox-B等位变异对脂肪氧化酶活性和面粉色泽的影响. 中国农业科学, 2017,50(8):1370-1377.
doi: 10.3864/j.issn.0578-1752.2017.08.002
[1] 田孟祥,宫彦龙,张时龙,何友勋,雷月,余本勋,余莉,李佳丽,张大双,叶永印. 水稻苗期耐低温基因COLD1新功能标记的设计与验证[J]. 作物杂志, 2020, (1): 55–60
[2] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20–26
[3] 史娜溶,李静静,吴慧玉,孙道杰,冯毅,王辉,刘新伦,张玲丽. 西农979中长穗偃麦草(Thinopyrum ponticum)的遗传成分分析[J]. 作物杂志, 2019, (1): 15–21
[4] 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 75–79
[5] 孙鑫, 杨在东, 虞光辉, 等. Pinam、Pinbm和Gsp-1m基因表达载体构建及遗传转化[J]. 作物杂志, 2015, (4): 55–60
[6] 唐建卫, 殷贵鸿, 韩玉林, 等. 栽培措施对周麦27号主要农艺性状及品质特性的影响[J]. 作物杂志, 2013, (4): 111–116
[7] 黄珊珊, 李长锁, 杨明亮, 杨继学, 王继安. 水杨酸、茉莉酸途径4种关键酶与大豆抗蚜性的研究[J]. 作物杂志, 2012, (5): 54–58
[8] 陈东升, 袁汉民, 王小亮, 等. 高产优质小麦新品种宁冬11号的选育[J]. 作物杂志, 2009, (3): 115–115
[9] 宿俊吉, 董永梅, 柴守诚. 普通小麦中外源异染色质的检测研究进展[J]. 作物杂志, 2008, (3): 14–17
[10] 赵广才. 冬小麦秋播关键技术[J]. 作物杂志, 2007, (4): 91–92
[11] 朱统泉. 小麦新品种驻麦6号的选育及高产栽培技术[J]. 作物杂志, 2007, (2): 69–69
[12] 郑家文. 保山市大麦种植区的气候特点与高产分析[J]. 作物杂志, 2007, (1): 41–42
[13] 廖敦秀, 石有明, 张丕辉, 等. 高产抗病小麦新品种渝麦10号的选育[J]. 作物杂志, 2007, (1): 70–70
[14] 郭彦太, 董爱书, 杨庆东, 等. 春小麦新品种垦九9号[J]. 作物杂志, 2003, (6): 12–12
[15] 唐朝晖, 张兰萍, 逯成芳, 等. 抗旱节水型小麦新品种晋麦70的选育[J]. 作物杂志, 2003, (5): 50–50
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[2] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[3] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[4] 杨飞,马文礼,陈永伟,张战胜,王昊. 匀播、滴灌对春小麦幼穗分化进程及产量的影响[J]. 作物杂志, 2018, (4): 84 –88 .
[5] 陆姗姗,吴承来,李岩,张春庆. 玉米自交系性状保持和纯化的分子依据[J]. 作物杂志, 2018, (1): 41 –48 .
[6] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9 –15 .
[7] 张增艳, 陈洋, 邵艳军. 植物激素调控植物防御反应的研究进展[J]. 作物杂志, 2009, (6): 13 –17 .
[8] 张海芝, 马威, 王桂英, 等. 棉花毛豆套作效益及栽培技术研究[J]. 作物杂志, 2003, (3): 33 –34 .
[9] 马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展[J]. 作物杂志, 2012, (2): 10 –15 .
[10] 王熹, 俞美玉, 陶龙兴. 烯效唑的生理活性及应用研究初报[J]. 作物杂志, 1993, (2): 33 –34 .