作物杂志,2021, 第2期: 45–51 doi: 10.16035/j.issn.1001-7283.2021.02.006

所属专题: 油料作物

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

黑龙江省中东部地区主栽大豆品种产量指标筛选及评价

李灿东(), 郭泰(), 王志新, 郑伟, 赵海红, 张振宇, 徐杰飞, 郭美玲   

  1. 黑龙江省农业科学院佳木斯分院/国家大豆区域技术创新中心/国家大豆产业技术体系佳木斯综合试验站,154007,黑龙江佳木斯
  • 收稿日期:2020-05-28 修回日期:2020-06-15 出版日期:2021-04-15 发布日期:2021-04-16
  • 通讯作者: 郭泰
  • 作者简介:李灿东,从事大豆遗传育种与栽培技术研究工作,E-mail: licandong@126.com
  • 基金资助:
    黑龙江省自然科学基金优秀青年基金(YQ2019C021);耐密植大豆种质资源鉴定与创新利用(2016YFD0100201-08)

Evaluation and Determination of Yield Evaluation Indicators of Soybean Mainly Cultivated Varieties in the Central and Eastern of Heilongjiang Province

Li Candong(), Guo Tai(), Wang Zhixin, Zheng Wei, Zhao Haihong, Zhang Zhenyu, Xu Jiefei, Guo Meiling   

  1. Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences/National Soybean Regional Technology Innovation Center/Jiamusi Experiment Station of National Soybean Industrial Technology System, Jiamusi 154007, Heilongjiang, China
  • Received:2020-05-28 Revised:2020-06-15 Online:2021-04-15 Published:2021-04-16
  • Contact: Guo Tai

摘要:

以黑龙江省中东部地区28个大豆主栽品种为试验材料,采用主成分分析、隶属函数分析和逐步回归分析方法,对该区域大豆产量进行综合评价及鉴定指标筛选。结果表明,通过主成分分析将10个产量相关单项指标转换为4个独立综合指标,性状累计贡献率为79.083%;通过隶属函数计算产量综合评价值(Y),对参试品种进行产量综合评价,筛选出了产量较高的大豆品种合农71、合农85、绥农26、合农75、黑农61及合农76等;通过逐步回归分析法建立大豆产量评价数学模型,Y=0.122+0.736X1+0.465X2+0.168X3+2.527X4+0.326X5+0.289X6-0.313X8,平均估计精度为92.16%;筛选了7个核心产量评价性状,分别为主茎节数、单株荚数、单株粒数、每荚粒数、单株粒重、百粒重及4粒荚数,该模型可作为大豆育种材料产量评价及品种产量鉴定的理论依据。

关键词: 黑龙江省中东部, 主栽大豆品种, 产量评价, 鉴定指标

Abstract:

Twenty-eight soybean mainly cultivated varieties in the central and eastern of Heilongjiang province were used as materials, the analytical methods of the principal component analysis, membership function method, and stepwise regression analysis had been used to evaluate the yield and to select the determination of evaluation indicators. The results showed that ten single yield indexes were being transformed to four independent comprehensive components through principal component analysis representing 79.083% cumulative contribution rate. The membership function method was employed to calculate the comprehensive yield value (Y). After the yield comprehensive evaluation, high-yield soybean varieties Henong 71, Henong 85, Suinong 26, Henong 75, Heinong 61 and Henong 76 were screened out. A mathematical evaluation model for soybean yield was established by stepwise regression analysis, Y=0.122+0.736X1+0.465X2+0.168X3+2.527X4+0.326X5+0.289X6-0.313X8, which mean accuracy was 92.16%. Seven indexes were closely related to the yield, including the nodes on the main stem, pod number per plant, seed number per plant, seed number per pod, seed weight per plant, 100-seed weight, and four-seed pod number. The model can be used as a theoretical basis for yield evaluation of soybean breeding materials and variety yield identification.

Key words: The central and eastern of Heilongjiang province, Soybean mainly cultivated varieties, Yield evaluation, Evaluation indicators

表1

参试大豆品种及区域分布

序号Number 品种Variety 适宜区域Suitable area 序号Number 品种Variety 适宜区域Suitable area
1 合丰45 黑龙江省第三积温带 15 黑农48 黑龙江省第一积温带
2 合丰50 黑龙江省第三积温带 16 黑农51 黑龙江省第一积温带
3 合丰51 黑龙江省第三积温带 17 黑农61 黑龙江省第二积温带
4 合农67 黑龙江省第三积温带 18 黑农69 黑龙江省第二积温带
5 合农68 黑龙江省第三积温带 19 绥农14 黑龙江省第二积温带
6 合农69 黑龙江省第三积温带 20 绥农26 黑龙江省第二积温带
7 合农71 黑龙江省第一积温带 21 绥农28 黑龙江省第二积温带
8 合农75 黑龙江省第三积温带 22 绥农33 黑龙江省第二积温带
9 合农76 黑龙江省第三积温带 23 绥农35 黑龙江省第二积温带
10 合农85 黑龙江省第三积温带 24 绥农44 黑龙江省第二积温带
11 合农95 黑龙江省第四积温带 25 绥农53 黑龙江省第二积温带
12 合农97 黑龙江省第三积温带 26 绥农75 黑龙江省第二积温带
13 黑农35 黑龙江省第二积温带 27 绥农76 黑龙江省第二积温带
14 黑农44 黑龙江省第二积温带 28 合丰55(CK) 黑龙江省第二积温带

表2

大豆产量相关性状直接相关分析

性状
Trait
主茎节数
NMS
单株荚数
PNPP
单株粒数
SNPP
每荚粒数
NSPP
单株粒重
SWPP
百粒重
100-SW
3粒荚数
THPN
4粒荚数
FPN
每节荚数
PNPN
单株荚数PNPP -0.519**
单株粒数SNPP -0.541** -0.791**
每荚粒数NSPP -0.008 -0.383* -0.259
单株粒重SWPP -0.217 -0.597** -0.617** -0.255
百粒重100-SW -0.247 -0.380* -0.387* -0.282 0.117
3粒荚数THPN -0.107 -0.543** -0.689** -0.303* 0.618** -0.134
4粒荚数FPN -0.077 -0.225 -0.226 -0.352* 0.108 -0.224 0.224
每节荚数PNPN -0.186 -0.426* -0.451** -0.040 0.280 -0.143 0.124 -0.318*
小区产量Plot yield -0.383* -0.301* -0.214 -0.523** 0.347* -0.163 0.330* -0.215 0.227

表3

各性状主成分的特征向量及贡献率

主成分Principle factor CI1 CI2 CI3 CI4
特征值Eigen value 4.283 1.341 1.164 1.121
贡献率Contribution ratio (%) 42.830 13.408 11.637 11.207
累计贡献率Cumulative contribution ratio (%) 42.830 56.239 67.875 79.083
特征向量Eigenvector X1 0.1320* -0.2156 0.1223 0.0810
X2 0.0951 0.0494 -0.1128* 0.0087
X3 0.1016* 0.0705 -0.0253 0.0360
X4 0.0180 0.1240 0.6542* 0.1762
X5 0.1578 -0.0980 0.1681 -0.2396*
X6 0.0604 -0.0447 0.3260 -0.4147*
X7 0.0931 0.0644 -0.0951* 0.0293
X8 -0.0013 -0.0884 0.1948 0.6805*
X9 0.0121 0.4029* 0.1673 -0.0216
X10 -0.0755 0.5757* -0.0013 -0.0659

表4

参试品种产量性状综合指标值、权重、F(Xi)、Y值及综合评价

序号Number 材料Material CI1 CI2 CI3 CI4 F(X1) F(X2) F(X3) F(X4) Y
1 合农71 0.39 -0.33 2.14 0.47 0.86 0.29 1.00 0.87 0.79
2 合农85 0.59 -0.63 0.18 0.55 1.00 0.23 0.45 0.89 0.77
3 绥农26 0.51 0.26 -0.47 -0.30 0.95 0.42 0.26 0.66 0.72
4 合农75 0.48 -1.30 0.17 0.96 0.93 0.09 0.44 1.00 0.72
5 黑农61 0.19 0.25 1.26 0.76 0.73 0.42 0.75 0.95 0.71
6 合农76 0.10 0.59 0.85 0.46 0.67 0.49 0.64 0.87 0.66
7 黑农44 0.33 -0.11 -0.16 0.05 0.82 0.34 0.35 0.76 0.66
8 绥农44 0.22 0.92 -0.82 0.17 0.75 0.56 0.16 0.79 0.64
9 合农69 -0.04 -0.54 1.60 0.94 0.57 0.25 0.85 0.99 0.62
10 绥农28 0.05 0.04 0.28 0.90 0.64 0.37 0.47 0.98 0.62
11 黑农69 -0.06 0.02 1.44 -0.48 0.56 0.37 0.8 0.62 0.57
12 合丰45 -0.03 0.53 0.41 -0.28 0.58 0.48 0.51 0.67 0.57
13 合农68 0.03 0.42 0.03 -0.33 0.62 0.45 0.4 0.66 0.57
14 合丰51 0.29 0.11 -0.18 -2.79 0.80 0.39 0.34 0.00 0.55
15 绥农76 -0.23 2.96 -0.60 -0.27 0.45 1.00 0.23 0.67 0.54
16 绥农53 0.02 0.32 -0.88 -0.04 0.61 0.43 0.15 0.73 0.53
17 合农97 -0.19 0.34 0.96 -0.33 0.47 0.44 0.67 0.66 0.52
18 黑农48 0.03 0.26 -1.40 0.12 0.62 0.42 0.00 0.78 0.52
19 合农95 0.07 -1.21 -1.21 -0.11 0.65 0.11 0.05 0.71 0.48
20 绥农33 -0.34 -0.13 0.74 0.73 0.37 0.34 0.6 0.94 0.48
21 合丰50 -0.17 0.03 -0.18 -0.58 0.49 0.37 0.34 0.59 0.46
22 合农67 -0.06 0.19 -0.99 -0.80 0.56 0.41 0.12 0.53 0.46
23 黑农35 0.05 -1.70 -0.66 -0.60 0.64 0.00 0.21 0.58 0.46
24 绥农35 -0.28 -1.05 -1.17 -0.42 0.41 0.14 0.06 0.63 0.35
25 绥农14 -0.53 -0.58 -0.51 0.39 0.24 0.24 0.25 0.85 0.33
26 绥农75 -0.54 -0.13 -0.63 0.28 0.24 0.34 0.22 0.82 0.33
27 黑农51 -0.89 0.47 -0.22 0.68 0.00 0.47 0.33 0.93 0.26
权重Index weight 0.5416 0.1695 0.1471 0.1417

表5

回归方程的估计精度分析

序号Number 材料Material 原始值Primary value 回归值Regression value 拟合误差Fitting error 估计精度Evaluation accuracy
1 合丰45 0.7164 0.7273 0.0109 0.9847
2 合丰50 0.4606 0.4930 0.0323 0.9299
3 合丰51 0.5484 0.6990 0.1506 0.7253
4 合农67 0.4647 0.4973 0.0325 0.9300
5 合农68 0.5214 0.5317 0.0102 0.9804
6 合农69 0.6189 0.6298 0.0109 0.9824
7 合农71 0.7886 0.7684 -0.0201 0.9745
8 合农75 0.3460 0.3998 0.0538 0.8444
9 合农76 0.4575 0.5566 0.0991 0.7834
10 合农85 0.4783 0.5264 0.0480 0.8995
11 合农95 0.6166 0.6085 -0.0080 0.9870
12 合农97 0.6619 0.6413 -0.0207 0.9687
13 黑农35 0.6632 0.6924 0.0292 0.9560
14 黑农44 0.7109 0.6896 -0.0213 0.9700
15 黑农48 0.5179 0.5014 -0.0165 0.9681
16 黑农51 0.2591 0.3120 0.0528 0.7962
17 黑农61 0.3297 0.3874 0.0578 0.8248
18 黑农69 0.5717 0.6512 0.0796 0.8608
19 绥农14 0.5659 0.6043 0.0384 0.9322
20 绥农26 0.6375 0.6148 -0.0227 0.9645
21 绥农28 0.5662 0.6087 0.0425 0.9249
22 绥农33 0.4804 0.5094 0.0291 0.9395
23 绥农35 0.7229 0.7382 0.0154 0.9787
24 绥农44 0.7724 0.7628 -0.0096 0.9876
25 绥农53 0.5320 0.5374 0.0054 0.9899
26 绥农75 0.3332 0.3553 0.0221 0.9337
27 绥农76 0.5396 0.5782 0.0386 0.9284
[1] 李灿东, 郭泰, 王志新, 等. 大豆倒伏性对耐密性及产量的影响. 黑龙江农业科学, 2019(8):1-33.
[2] Ivan R C, Maicon N, Gustavo H D, et al. Relations among phenotypic traits of soybean pods and growth habit. African Journal of Agricultural Research, 2017,6:450-458.
[3] 李灿东, 郭泰, 王志新, 等. 大豆耐密性状与产量的相关分析. 大豆科学, 2019,38(6):862-867.
[4] 李春红, 姚兴东, 鞠宝韬, 等. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014,47(15):2927-2939.
[5] 田艺心, 曹鹏鹏, 高凤菊, 等. 基于主成分、隶属函数和聚类分析的大豆耐盐性综合评价. 山东农业科学, 2020,52(4):16-22.
[6] 李笑梅, 邢竺静, 赵廉诚, 等. 基于主成分与聚类分析法的豆浆豆的品质指标综合评价. 食品科学, 2020,41(15):64-71.
[7] 荆瑞勇, 王丽艳, 郑桂萍, 等. 水稻萌发期和幼苗期耐盐性鉴定指标筛选及综合评价. 黑龙江八一农垦大学学报, 2019,31(6):1-6.
[8] 于淼, 陈冰嬬, 石贵山, 等. 粒用高粱亲本系萌发期耐碱性鉴定与综合评价. 山西农业科学, 2020,40(3):21-29.
[9] 胡廷会, 成良强, 王军, 等. 不同基因型花生耐荫性评价及其鉴定指标的筛选. 中国农业科学, 2020,53(6):1140-1153.
[10] 王培培, 姬俊华, 付军亮, 等. 不同基因型棉花苗期耐磷性评价及鉴定指标筛选. 贵州农业科学, 2019,47(8):8-12.
[11] 武辉, 侯丽丽, 周艳飞, 等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012,45(9):1703-1713.
[12] 黄建都, 林翮飞, 王艳娜, 等. 黄瓜芽期耐热相关指标的筛选及预测方程的建立. 江西农业科学, 2019,31(12):8-12.
[13] 邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
[14] 孙艳, 高海顺, 管志勇, 等. 菊花近缘种属植物幼苗耐阴特性分析及其评价指标的确定. 生态学报, 2012,32(6):1908-1916.
[15] 郑云霄, 刘文斯, 赵永锋, 等. 玉米种质资源的抗倒伏性评价及鉴定指标筛选. 植物遗传资源学报, 2019,20(6):1588-1596.
[16] 王秋兰, 靳鲲鹏, 刘永忠, 等. 玉米苗期抗旱性鉴定指标及综合评价. 山西农业科学, 2019(3):319-322,365.
[17] 王玉斌, 平俊爱, 牛皓, 等. 粒用高粱种质中后期抗旱性鉴定筛选与分类指标评价. 中国农业科学, 2019,55(22):4039-4052.
[1] 付鸾鸿,于崧,于立河,薛盈文,郭伟. 不同基因型燕麦萌发期耐盐碱性分析及其鉴定指标的筛选[J]. 作物杂志, 2018, (6): 27–35
[2] 马延华, 王庆祥, 陈绍江. 玉米耐寒性鉴定研究进展[J]. 作物杂志, 2012, (4): 1–8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!