作物杂志,2025, 第1期: 8998 doi: 10.16035/j.issn.1001-7283.2025.01.011
所属专题: 水稻专题
Yan Na(), Xie Keran, Gao Ti, Hu Qiuqian, Cui Kehui(
)
摘要:
全球气候变暖导致的极端高温天气严重影响水稻生产,幼穗分化期高温影响水稻幼穗发育和颖花育性,进而导致产量下降。本试验在盆栽条件下选取高温抗性品种汕优63(SY63)和高温敏感品种两优培九(LYPJ),在幼穗分化二期设置低穗肥(LN,0.072 g N/kg)、高穗肥(HN,0.144 g N/kg)2个不同穗氮肥施用量和连续15 d的白天高温处理(高温处理白天和夜间平均温度为35.6 ℃/27.5 ℃,以29.6 ℃/26.8 ℃为对照温度)。结果表明,与对照温度相比,LN和HN处理下高温导致LYPJ产量分别下降36.9%和24.8%,颖花育性分别降低22.8%和8.1%,对SY63产量和颖花育性无显著影响,表明增施穗氮肥显著促进了高温下LYPJ产量形成。增施穗氮肥显著提高了花前穗非结构性碳水化合物(NSC)含量,提高了花后茎鞘NSC向穗的转运量。穗NSC积累量、茎鞘NSC转运量与颖花育性、结实率和产量均呈正相关。因此,高温下增施穗氮肥可能通过促进茎鞘同化物积累与再分配缓解穗分化期高温伤害。
[1] | IPCC. Climate Change 2021: The Physical Science Basis// Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. UK,Cambridge:Cambridge University Press,2021:56-73. |
[2] | Piao S L, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467 (7311):43-51. |
[3] | Zhao C, Liu B, Piao S L, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35):9326-9331. |
[4] | Khan A H, Min L, Ma Y Z, et al. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. Plant Biotechnology Journal, 2023, 21(4):680-697. |
[5] | Peng S B, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27):9971-9975. |
[6] |
Zhang C X, Li G Y, Chen T T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018, 11:14.
doi: 10.1186/s12284-018-0206-5 pmid: 29532187 |
[7] | Wu C, Cui K H, Tang S, et al. Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. Field Crop Research, 2020, 252:107795. |
[8] |
Jagadish K S V, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(7):1627-1635.
doi: 10.1093/jxb/erm003 pmid: 17431025 |
[9] | 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展. 作物杂志, 2024(1):8-15. |
[10] | Cao Y Y, Chen Y H, Chen M X, et al. Growth characteristics and endosperm structure of superior and inferior spikelets of indica rice under high-temperature stress. Biologia Plantarum, 2016, 60(3):532-542. |
[11] |
Wu C, Cui K H, Wang W C, et al. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports, 2016, 6:34978.
doi: 10.1038/srep34978 pmid: 27713528 |
[12] | Wang W C, Cui K H, Hu Q Q, et al. Response of spikelet water status to high temperature and its relationship with heat tolerance in rice. The Crop Journal, 2020, 9(6):1344-1356. |
[13] |
Kaushal N, Awasthi R, Gupta K, et al. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 2013, 40(12):1334-1349.
doi: 10.1071/FP13082 pmid: 32481199 |
[14] | Zhou R, Kjaer K H, Rosenqvist E, et al. Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. Journal of Agronomy Crop Science, 2017, 203(1):68-80. |
[15] | Yang J, Duan L C, He H H, et al. Application of exogenous KH2PO4 and salicylic acid and optimization of the sowing date enhance rice yield under high-temperature conditions. Journal of Plant Growth Regulation, 2021, 41(4):1532-1546. |
[16] | Zhang C X, Feng B H, Chen T T, et al. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environmental and Experimental Botany, 2018, 155:718-733. |
[17] |
Li Z M, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. Journal of Experimental Botany, 2012, 63(3):1155-1166.
doi: 10.1093/jxb/err329 pmid: 22105847 |
[18] | Li X, Lawas L M, Malo R, et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell and Environment, 2015, 38(10):2171-2192. |
[19] | Hu Q Q, Wang W C, Lu Q F, et al. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 2021, 21(1):428. |
[20] | Zhang H, Liang W Q, Yang X J, et al. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell, 2010, 22(3):672-689. |
[21] | Kamiji Y, Yoshidab H, Palta J A, et al. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 2011, 122(3):242-247. |
[22] | 杨军, 陈小荣, 朱昌兰, 等. 氮肥和孕穗后期高温对两个早稻品种产量和生理特性的影响. 中国水稻科学, 2014, 28(5):523-533. |
[23] | Xiong D L, Yu T T, Ling X X, et al. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high- temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments. Functional Plant Biology, 2015, 42(4):347-356. |
[24] |
Liu K, Deng J, Lu J, et al. High nitrogen levels alleviate yield loss of super hybrid rice caused by high temperatures during the flowering stage. Frontiers in Plant Science, 2019, 10:357.
doi: 10.3389/fpls.2019.00357 pmid: 30972091 |
[25] | Yan C, Ding Y, Wang Q, et al. The impact of relative humidity,genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. Journal of Agricultural Science, 2010, 148:329-339. |
[26] | 段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27(6):591-602. |
[27] | Yousuf P Y, Abd Allah E F, Nauman M, et al. Responsive proteins in wheat cultivars with contrasting nitrogen efficiencies under the combined stress of high temperature and low nitrogen. Genes, 2017, 8(12):356. |
[28] | Gao C H, Feng B, Li G F, et al. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis. Acta Agronomica Sinica, 2023, 49(3):821- 832. |
[29] | Pan J F, Cui K H, Wei D, et al. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiologia Plantarum, 2011, 141(4):321-331. |
[30] | 潘俊峰, 李国辉, 崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用. 中国水稻科学, 2014, 28(4):335-342. |
[31] | Yoshida S, Forno D A, Cock J H, et al. Laboratory manual for physiological studies of rice. Manila: International Rice Research Instituten Press,1976. |
[32] |
Li G H, Pan J F, Cui K H, et al. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Frontiers in Plant Science, 2017, 8:1369.
doi: 10.3389/fpls.2017.01369 pmid: 28848573 |
[33] | Wang Y L, Zhang Y K, Zhang Q, et al. Comparative transcriptome analysis of panicle development under heat stress in two rice (Oryza sativa L.) cultivars differing in heat tolerance. PeerJ, 2019, 7:e7595. |
[34] |
Cheabu S, Panichawong N, Rattanametta P, et al. Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population. Rice Science, 2019, 26(4):229-238.
doi: 10.1016/j.rsci.2018.08.008 |
[35] | Yang J, Chen X R, Zhu C L, et al. Using RNA-seq to profile gene expression of spikelet development in response to temperature and nitrogen during meiosis in rice (Oryza sativa L.). PLoS ONE, 2015, 10(12):e0145532. |
[36] | Mahmood A, Wang W, Ali I, et al. Individual and combined effects of booting and flowering high-temperature stress on rice biomass accumulation. Plants, 2021, 10(5):1021. |
[37] | Suwa R, Hakata H, Hara H. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 2010, 48(2/3):124-130. |
[38] | 穆心愿, 马智艳, 卢良涛, 等. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响. 中国生态农业学报(中英文), 2024, 32(1):106-118. |
[39] | Guo H X, Liu W Q, Shi Y C. Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica, 2006, 44(1):140-142. |
[40] | Yong Z H, Chen G Y, Zhang D Y. Is photosynthetic acclimation to free-air CO2 enrichment (FACE) related to a strong competition for the assimilatory power between carbon assimilation and nitrogen assimilation in rice leaf? Photosynthetica, 2007, 45(1):85-91. |
[41] |
陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33(5):457-466.
doi: 10.16819/j.1001-7216.2019.9036 |
[42] | Zhen F X, Zhou J J, Mahmood A, et al. Quantifying the effects of short-term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. The Crop Journal, 2020, 8(2):194-212. |
[43] | 张彩霞, 符冠富, 奉保华, 等. 水稻同化物转运及其对逆境胁迫响应的机理. 中国农业气象, 2018, 39(2):73-83. |
[44] | Chung P, Hsiao H H, Chen H J, et al. Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiologiae Plantarum, 2014, 36(1):217-229. |
[45] | 曹珍珍. 高温对水稻花器伤害和籽粒品质影响的相关碳氮代谢机理. 杭州:浙江大学, 2014. |
[46] | Xu J M, Misra G, Sreenivasulu N, et al. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice. Plant,Cell and Environment, 2021, 44(7):2245-2261. |
[47] | Oh-e I, Saitoh K, Kuroda T. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science, 2007, 10(4):412-422. |
[48] | Morita S, Nakano H. Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat-tolerant rice cultivar nikomaru. Crop Science, 2011, 51(2):818-828 |
[49] | 闫娜. 增施氮素穗肥对幼穗分化期高温下水稻产量的影响及生理机理研究. 武汉:华中农业大学, 2021. |
[50] | Wu C, Cui K H, Fahad S. Heat stress decreases rice grain weight: evidence and physiological mechanisms of heat effects prior to flowering. International Journal of Molecular Sciences, 2022, 23(18):10922. |
[51] | Vu L D, Gevaert K, Smet De. Feeling the heat:searching for plant thermosensors. Trends in Plant Science, 2019, 24(3):210-219. |
[52] | 胡秋倩. 氮供应对水稻幼穗分化期高温下产量形成的影响及机理研究. 武汉:华中农业大学, 2021. |
[53] | Fu J, Huang Z, Wang Z, et al. Pre-anthesis nonstructural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Research, 2011, 123(2):170-182. |
[54] | Okamura M, Hirose T, Hashida Y, et al. Suppression of starch accumulation in ʻsugar leavesʼ of rice affects plant productivity under field conditions. Plant Production Science, 2017, 20(1):102-110. |
[1] | 任永福, 李嘉怡, 陈国鹏, 蒲甜, 陈虹, 王小春. 不同栽培管理模式对带状套作玉米产量与效率的影响[J]. 作物杂志, 2025, (2): 101108 |
[2] | 张家智, 赵羽涵, 丁俊杰, 姚亮亮, 邱磊, 张茂明, 王自杰, 高雪冬, 黄成亮, 崔士泽, 杨晓贺. “双免密苗”技术对寒地水稻秧苗素质及酶活性的影响[J]. 作物杂志, 2025, (2): 109114 |
[3] | 田文强, 王泓懿, 聂凌帆, 孙刚刚, 张君, 张强斌, 于姗, 李家豪, 张金汕, 石书兵. 播期和播量对超晚播小麦群体生长、干物质积累及产量的影响[J]. 作物杂志, 2025, (2): 115122 |
[4] | 姬景红, 刘双全, 马星竹, 郝小雨, 郑雨, 赵月, 王晓军, 匡恩俊. 控释尿素对寒地水稻农艺性状、产量及氮肥利用率的影响[J]. 作物杂志, 2025, (2): 149154 |
[5] | 张纪利, 何敬浩, 韦建玉, 黄崇峻, 王维, 蔡一霞. 微生物菌剂配施时期对根际土壤细菌多样性、酶活性及烤烟产量和品质的影响[J]. 作物杂志, 2025, (2): 162171 |
[6] | 金丹丹, 隋世江, 陈玥, 李波, 曲航, 宫亮. 秸秆还田下氮肥减量对辽河平原水稻产量及氮素利用的影响[J]. 作物杂志, 2025, (2): 172179 |
[7] | 伍露, 张皓, 杨霏云, 郭尔静, 斯林林, 曹凯, 程陈. WOFOST模型对江淮地区水稻生长发育模拟的适应性评价[J]. 作物杂志, 2025, (2): 215221 |
[8] | 李云霞, 杨佳蒴, 李洋洋, 向世鹏, 余金龙, 李斌, 郑维威, 刘璐. 不同移栽期对烟稻轮作烟区烤烟生长发育及产量和质量的影响[J]. 作物杂志, 2025, (2): 222227 |
[9] | 李俊志, 窦爽, 王晓东, 张蒙, 肖继兵. 不同间作模式对高粱生长发育的影响[J]. 作物杂志, 2025, (2): 234240 |
[10] | 江素珍, 许超, 王中元, 郑沈, 陈建国, 朱捍华, 黄道友, 张泉, 朱奇宏. 海泡石和生物炭对水稻镉和砷吸收积累的影响[J]. 作物杂志, 2025, (2): 241248 |
[11] | 赵玲玲, 李桂芳, 程楚, 郑铭洁, 胡敏, 朱剑锋, 沈阿衣, 沈阿呷, 王俊珍, 邵美红. 浙江省荞麦新品种引种试验初报[J]. 作物杂志, 2025, (2): 8692 |
[12] | 罗健科, 张克厚, 王泽宇, 张平珍, 南铭. 18个燕麦品种(系)在白银市沿黄河灌区的生产性能研究[J]. 作物杂志, 2025, (2): 93100 |
[13] | 龙卫华, 咸志慧, 张正, 阿里别里根·哈孜太, 祖勒胡玛尔·乌斯满江, 浦惠明, 胡茂龙. 长江下游非转基因抗除草剂杂交油菜品系在新疆伊犁河谷的适应性分析[J]. 作物杂志, 2025, (1): 111116 |
[14] | 储昭康, 王世济, 毕健健, 张林, 彭晨, 陈翔, 武文明. 江淮中部播期对夏玉米产量与灌浆特性的影响[J]. 作物杂志, 2025, (1): 117122 |
[15] | 张楷楷, 赵德明, 马菊花, 白鹏军, 马鹏, 陈蕙, 徐文杰, 黄彩霞, 刘众宇. 垄沟秸秆覆盖对旱作马铃薯土壤水热特征及产量的影响[J]. 作物杂志, 2025, (1): 139146 |
|