作物杂志,2025, 第1期: 89–98 doi: 10.16035/j.issn.1001-7283.2025.01.011

所属专题: 水稻专题

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

增施穗氮肥缓解水稻穗分化期高温伤害的生理机制研究

闫娜(), 谢可冉, 高逖, 胡秋倩, 崔克辉()   

  1. 作物遗传改良全国重点实验室/农业农村部长江中游作物生理生态与耕作重点实验室/华中农业大学植物科学技术学院,430070,湖北武汉
  • 收稿日期:2023-12-10 修回日期:2024-01-24 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 崔克辉,主要从事作物生理与栽培研究,E-mail:cuikehui@mail.hzau.edu.cn
  • 作者简介:闫娜,主要从事水稻高温逆境生理研究,E-mail:1587331422@qq.com
  • 基金资助:
    国家自然科学基金(31871541)

Physiological Mechanism of Increased Panicle Nitrogen Fertilizer Application on Alleviating High-Temperature Damage during the Rice Panicle Initiation Stage

Yan Na(), Xie Keran, Gao Ti, Hu Qiuqian, Cui Kehui()   

  1. National Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Physiology, Ecology and Tillage in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs /College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-12-10 Revised:2024-01-24 Online:2025-02-15 Published:2025-02-12

摘要:

全球气候变暖导致的极端高温天气严重影响水稻生产,幼穗分化期高温影响水稻幼穗发育和颖花育性,进而导致产量下降。本试验在盆栽条件下选取高温抗性品种汕优63(SY63)和高温敏感品种两优培九(LYPJ),在幼穗分化二期设置低穗肥(LN,0.072 g N/kg)、高穗肥(HN,0.144 g N/kg)2个不同穗氮肥施用量和连续15 d的白天高温处理(高温处理白天和夜间平均温度为35.6 ℃/27.5 ℃,以29.6 ℃/26.8 ℃为对照温度)。结果表明,与对照温度相比,LN和HN处理下高温导致LYPJ产量分别下降36.9%和24.8%,颖花育性分别降低22.8%和8.1%,对SY63产量和颖花育性无显著影响,表明增施穗氮肥显著促进了高温下LYPJ产量形成。增施穗氮肥显著提高了花前穗非结构性碳水化合物(NSC)含量,提高了花后茎鞘NSC向穗的转运量。穗NSC积累量、茎鞘NSC转运量与颖花育性、结实率和产量均呈正相关。因此,高温下增施穗氮肥可能通过促进茎鞘同化物积累与再分配缓解穗分化期高温伤害。

关键词: 水稻, 穗氮肥, 幼穗分化期高温, 茎鞘同化物再分配, 产量

Abstract:

The extreme high temperatures caused by global warming seriously affect rice production. The high temperature during the panicle initiation stage impacts the panicle development and spikelet fertility of rice, leading to the yield decline. The high-temperature resistant variety Shanyou 63 (SY63) and the high-temperature sensitive variety Liangyoupeijiu (LYPJ) were selected for experiment under potted conditions. Two panicle nitrogen fertilizer application rates (low panicle fertilizer, LN, 0.072 g N/kg soil; high panicle fertilizer, HN, 0.144 g N/kg soil) were set in the second stage of panicle initiation and subjected to daytime high temperature treatment (The average temperature under control treatment was 29.6 ℃/26.8 ℃ during the day and night, the high temperature treatment reached 35.6 ℃/27.5 ℃) for successive 15 days. The results showed that compared with the control temperature, the high temperature treatment decreased the yield by 36.9% and 24.8% under LN and HN treatments in LYPJ, and spikelet fertility by 22.8% and 8.1%, respectively. There was no significant effect on yield and spikelet fertility in SY63 under high temperature treatment, indicating that increased panicle nitrogen fertilizer application rate significantly promoted the yield formation in LYPJ under high temperature. The increased panicle nitrogen fertilizer application rates increased the concentration of non-structural carbohydrates (NSC) in pre-flowering panicles, and promoted the post-flowering transport of NSC from stems to panicles. The accumulation of panicle NSC and the transport of stem NSC are positively correlated with spikelet fertility, seed-setting rate and yield. Therefore, increasing the panicle nitrogen fertilizer application rates may promote the accumulation and redistribution of assimilates in stems under high temperature, thereby alleviating high- temperature damage during panicle initiation stage.

Key words: Rice, Panicle nitrogen fertilizer, High temperature during panicle initiation stage, Redistribution of assimilates of stem, Yield

图1

高温处理期间温室内平均温度和相对湿度 数据为高温处理期间每天同一时间点的4个探头所测温度的平均值(n=4)。

表1

幼穗分化期高温下增施穗氮肥对水稻产量及其构成因素的影响

品种
Variety
氮处理
N treatment
温度处理
Temperature
treatment
产量(g/株)
Yield (g/plant)
有效穗数(/株)
Effective panicle
number (per plant)
穗粒数
Spikelet per
panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
LYPJ LN CK 25.2±0.9a 10.7±0.3a 116.6±2.6a 85.5±3.1a 23.7±0.4a
HDT 15.9±1.0c 10.3±0.7a 112.8±9.6a 59.3±6.1c 22.9±0.6a
HN CK 25.8±1.3a 11.7±0.7a 116.4±10.0a 82.5±3.5a 23.3±0.6a
HDT 19.4±0.8b 12.0±0.6a 100.8±0.7a 72.7±0.8b 22.1±0.2a
方差分析Analysis of variance
温度 (T) *** ns ns *** *
N处理 (N) * * ns * ns
T×N ns ns ns * ns
SY63 LN CK 27.9±1.1b 10.0±0.0b 130.2±3.8a 82.0±3.0a 26.2±0.7a
HDT 27.6±1.4b 11.3±0.7b 117.6±6.0ab 77.5±0.7a 26.9±0.5a
HN CK 34.8±2.5a 15.7±0.7a 109.5±8.6ab 77.6±1.1a 26.2±0.8a
HDT 31.7±1.3ab 14.7±0.3a 105.1±6.3b 77.3±1.2a 26.7±0.8a
方差分析Analysis of variance
温度 (T) ns ns ns ns ns
N处理 (N) * *** * ns ns
T×N ns * ns ns ns

图2

幼穗分化期高温下增施穗氮肥对水稻花粉和颖花育性的影响 不同小写字母表示同一品种在不同温度、不同穗氮肥处理下同一性状在P < 0.05水平上差异显著(LSD法)。ns表示在P < 0.05水平无显著差异;“*”、“**”和“***”分别代表在P < 0.05、P < 0.01和P < 0.001水平存在显著差异。

表2

幼穗分化期高温下增施穗氮肥对水稻Pn和Tr的影响

品种Variety 氮处理N treatment 温度处理Temperature treatment Pn [μmol/(m2·s)] Tr [mmol/(m2·s)]
LYPJ LN CK 26.7±0.7a 7.4±0.4b
HDT 26.0±0.7ab 9.6±0.3a
HN CK 27.5±0.9a 6.8±0.3b
HDT 23.7±0.8b 9.1±0.3a
方差分析Analysis of variance
温度 (T) * ***
N处理 (N) ns ns
T×N ns ns
SY63 LN CK 21.7±1.1c 6.6±0.5b
HDT 23.5±0.6bc 8.9±0.2a
HN CK 28.2±0.8a 7.0±0.2b
HDT 24.6±0.4b 9.0±0.2a
方差分析Analysis of variance
温度 (T) ns ***
N处理 (N) ** ns
T×N * ns

表3

幼穗分化期高温下增施穗氮肥对花前叶片和穗NSC含量和积累量的影响

品种
Variety
氮处理
N treatment
温度处理
Temperature treatment
叶片NSC含量
Leaf CNSC (mg/g)
叶片NSC积累量(g/株)
Leaf TMNSC (g/plant)
穗NSC含量
Panicle CNSC (mg/g)
穗NSC积累量(g/株)
Panicle TMNSC (g/plant)
LYPJ LN CK 35.5±1.0c 0.36±0.0c 259.2±13.1a 0.28±0.0a
HDT 44.9±3.3ab 0.48±0.0ab 209.3±11.2c 0.10±0.0b
HN CK 39.1±1.1bc 0.47±0.0b 263.5±6.3a 0.29±0.0a
HDT 48.3±3.3a 0.55±0.0a 223.7±16.3b 0.10±0.0b
方差分析Analysis of variance
温度 (T) ** ** ** ***
N处理 (N) ns ** ns ns
T×N ns ns ns ns
SY63 LN CK 44.5±2.5a 0.53±0.0b 255.5±16.4a 0.28±0.0a
HDT 43.2±2.6a 0.52±0.0b 231.2±13.6a 0.21±0.0b
HN CK 45.0±3.5a 0.66±0.0a 241.7±14.6a 0.23±0.0ab
HDT 46.7±0.4a 0.69±0.0a 214.2±8.8a 0.19±0.0b
方差分析Analysis of variance
温度 (T) ns ns ns *
N处理 (N) ns ** ns ns
T×N ns ns ns ns

表4

幼穗分化期高温下增施穗氮肥对茎鞘NSC相关性状的影响

品种
Variety
氮处理
N treatment
温度处理
Temperature
treatment
抽穗期
NSC含量
CNSC at heading
(mg/g)
抽穗期NSC
积累量(g/株)
TMNSC at heading
(g/plant)
成熟期
NSC含量
CNSC at maturity
(mg/g)
成熟期NSC
积累量(g/株)
TMNSC at maturity
(g/plant)
NSC
转运量
ATMNSC
(mg/g)
NSC
转运效率
ARNSC
(%)
NSC转运量
对产量贡献率
ACNSC (%)
LYPJ LN CK 202.7±4.4ab 2.7±0.1b 117.2±4.3a 1.6±0.1a 1.1±0.2a 41.4±5.2a 4.6±0.8a
HDT 170.0±1.7c 2.1±0.1c 117.0±3.2a 1.5±0.0a 0.6±0.1b 27.3±2.4b 3.5±0.3b
HN CK 218.9±6.8a 3.1±0.1a 117.0±3.2a 1.5±0.1a 1.5±0.2a 50.6±5.2a 6.0±0.5a
HDT 191.9±3.0bc 2.8±0.1ab 116.8±4.0a 1.5±0.1a 1.2±0.0a 46.1±1.6a 6.6±0.3a
方差分析Analysis of variance
温度 (T) ** ** ns ns * ns ns
N处理 (N) * *** ns ns ** * **
T×N ns ns ns ns ns ns ns
SY63 LN CK 224.0±3.1a 4.3±0.2a 122.0±2.7a 2.3±0.1a 2.0±0.2a 46.9±3.1a 7.3±0.6a
HDT 231.0±5.8a 4.3±0.5a 123.2±5.2a 2.3±0.1a 2.0±0.4a 44.9±4.6a 7.1±0.6a
HN CK 232.4±4.0a 4.8±0.1a 126.5±3.6a 2.4±0.2a 2.3±0.1a 48.8±3.1a 6.7±1.2a
HDT 216.7±1.2a 4.2±0.2a 125.7±3.6a 2.2±0.1a 2.0±0.3a 46.9±4.5a 6.5±1.2a
方差分析Analysis of variance
温度 (T) ns ns ns ns ns ns ns
N处理 (N) ns ns ns ns ns ns ns
T×N * ns ns ns ns ns ns

表5

高温处理下水稻育性和产量与NSC相关指标的相关性

指标Index 颖花育性Spikelet fertility 花粉育性Pollen fertility 结实率Seed-setting rate 产量Yield
茎鞘NSC积累量TMNSC in stems 0.73** 0.86*** 0.82*** 0.87***
叶片NSC积累量TMNSC in leaves 0.54 0.54 0.55* 0.59*
穗NSC积累量TMNSC in panicles 0.56* 0.80** 0.66* 0.78**
ATMNSC 0.73** 0.78** 0.77** 0.75**
ARNSC 0.80** 0.69* 0.76** 0.54
ACNSC 0.74** 0.62* 0.69* 0.42
[1] IPCC. Climate Change 2021: The Physical Science Basis// Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. UK,Cambridge:Cambridge University Press,2021:56-73.
[2] Piao S L, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467 (7311):43-51.
[3] Zhao C, Liu B, Piao S L, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35):9326-9331.
[4] Khan A H, Min L, Ma Y Z, et al. High-temperature stress in crops: male sterility, yield loss and potential remedy approaches. Plant Biotechnology Journal, 2023, 21(4):680-697.
[5] Peng S B, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27):9971-9975.
[6] Zhang C X, Li G Y, Chen T T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018, 11:14.
doi: 10.1186/s12284-018-0206-5 pmid: 29532187
[7] Wu C, Cui K H, Tang S, et al. Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. Field Crop Research, 2020, 252:107795.
[8] Jagadish K S V, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany, 2007, 58(7):1627-1635.
doi: 10.1093/jxb/erm003 pmid: 17431025
[9] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展. 作物杂志, 2024(1):8-15.
[10] Cao Y Y, Chen Y H, Chen M X, et al. Growth characteristics and endosperm structure of superior and inferior spikelets of indica rice under high-temperature stress. Biologia Plantarum, 2016, 60(3):532-542.
[11] Wu C, Cui K H, Wang W C, et al. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports, 2016, 6:34978.
doi: 10.1038/srep34978 pmid: 27713528
[12] Wang W C, Cui K H, Hu Q Q, et al. Response of spikelet water status to high temperature and its relationship with heat tolerance in rice. The Crop Journal, 2020, 9(6):1344-1356.
[13] Kaushal N, Awasthi R, Gupta K, et al. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 2013, 40(12):1334-1349.
doi: 10.1071/FP13082 pmid: 32481199
[14] Zhou R, Kjaer K H, Rosenqvist E, et al. Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. Journal of Agronomy Crop Science, 2017, 203(1):68-80.
[15] Yang J, Duan L C, He H H, et al. Application of exogenous KH2PO4 and salicylic acid and optimization of the sowing date enhance rice yield under high-temperature conditions. Journal of Plant Growth Regulation, 2021, 41(4):1532-1546.
[16] Zhang C X, Feng B H, Chen T T, et al. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environmental and Experimental Botany, 2018, 155:718-733.
[17] Li Z M, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. Journal of Experimental Botany, 2012, 63(3):1155-1166.
doi: 10.1093/jxb/err329 pmid: 22105847
[18] Li X, Lawas L M, Malo R, et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell and Environment, 2015, 38(10):2171-2192.
[19] Hu Q Q, Wang W C, Lu Q F, et al. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 2021, 21(1):428.
[20] Zhang H, Liang W Q, Yang X J, et al. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell, 2010, 22(3):672-689.
[21] Kamiji Y, Yoshidab H, Palta J A, et al. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 2011, 122(3):242-247.
[22] 杨军, 陈小荣, 朱昌兰, 等. 氮肥和孕穗后期高温对两个早稻品种产量和生理特性的影响. 中国水稻科学, 2014, 28(5):523-533.
[23] Xiong D L, Yu T T, Ling X X, et al. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high- temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments. Functional Plant Biology, 2015, 42(4):347-356.
[24] Liu K, Deng J, Lu J, et al. High nitrogen levels alleviate yield loss of super hybrid rice caused by high temperatures during the flowering stage. Frontiers in Plant Science, 2019, 10:357.
doi: 10.3389/fpls.2019.00357 pmid: 30972091
[25] Yan C, Ding Y, Wang Q, et al. The impact of relative humidity,genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. Journal of Agricultural Science, 2010, 148:329-339.
[26] 段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27(6):591-602.
[27] Yousuf P Y, Abd Allah E F, Nauman M, et al. Responsive proteins in wheat cultivars with contrasting nitrogen efficiencies under the combined stress of high temperature and low nitrogen. Genes, 2017, 8(12):356.
[28] Gao C H, Feng B, Li G F, et al. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis. Acta Agronomica Sinica, 2023, 49(3):821- 832.
[29] Pan J F, Cui K H, Wei D, et al. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiologia Plantarum, 2011, 141(4):321-331.
[30] 潘俊峰, 李国辉, 崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用. 中国水稻科学, 2014, 28(4):335-342.
[31] Yoshida S, Forno D A, Cock J H, et al. Laboratory manual for physiological studies of rice. Manila: International Rice Research Instituten Press,1976.
[32] Li G H, Pan J F, Cui K H, et al. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Frontiers in Plant Science, 2017, 8:1369.
doi: 10.3389/fpls.2017.01369 pmid: 28848573
[33] Wang Y L, Zhang Y K, Zhang Q, et al. Comparative transcriptome analysis of panicle development under heat stress in two rice (Oryza sativa L.) cultivars differing in heat tolerance. PeerJ, 2019, 7:e7595.
[34] Cheabu S, Panichawong N, Rattanametta P, et al. Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population. Rice Science, 2019, 26(4):229-238.
doi: 10.1016/j.rsci.2018.08.008
[35] Yang J, Chen X R, Zhu C L, et al. Using RNA-seq to profile gene expression of spikelet development in response to temperature and nitrogen during meiosis in rice (Oryza sativa L.). PLoS ONE, 2015, 10(12):e0145532.
[36] Mahmood A, Wang W, Ali I, et al. Individual and combined effects of booting and flowering high-temperature stress on rice biomass accumulation. Plants, 2021, 10(5):1021.
[37] Suwa R, Hakata H, Hara H. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 2010, 48(2/3):124-130.
[38] 穆心愿, 马智艳, 卢良涛, 等. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响. 中国生态农业学报(中英文), 2024, 32(1):106-118.
[39] Guo H X, Liu W Q, Shi Y C. Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica, 2006, 44(1):140-142.
[40] Yong Z H, Chen G Y, Zhang D Y. Is photosynthetic acclimation to free-air CO2 enrichment (FACE) related to a strong competition for the assimilatory power between carbon assimilation and nitrogen assimilation in rice leaf? Photosynthetica, 2007, 45(1):85-91.
[41] 陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33(5):457-466.
doi: 10.16819/j.1001-7216.2019.9036
[42] Zhen F X, Zhou J J, Mahmood A, et al. Quantifying the effects of short-term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. The Crop Journal, 2020, 8(2):194-212.
[43] 张彩霞, 符冠富, 奉保华, 等. 水稻同化物转运及其对逆境胁迫响应的机理. 中国农业气象, 2018, 39(2):73-83.
[44] Chung P, Hsiao H H, Chen H J, et al. Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiologiae Plantarum, 2014, 36(1):217-229.
[45] 曹珍珍. 高温对水稻花器伤害和籽粒品质影响的相关碳氮代谢机理. 杭州:浙江大学, 2014.
[46] Xu J M, Misra G, Sreenivasulu N, et al. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice. Plant,Cell and Environment, 2021, 44(7):2245-2261.
[47] Oh-e I, Saitoh K, Kuroda T. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science, 2007, 10(4):412-422.
[48] Morita S, Nakano H. Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat-tolerant rice cultivar nikomaru. Crop Science, 2011, 51(2):818-828
[49] 闫娜. 增施氮素穗肥对幼穗分化期高温下水稻产量的影响及生理机理研究. 武汉:华中农业大学, 2021.
[50] Wu C, Cui K H, Fahad S. Heat stress decreases rice grain weight: evidence and physiological mechanisms of heat effects prior to flowering. International Journal of Molecular Sciences, 2022, 23(18):10922.
[51] Vu L D, Gevaert K, Smet De. Feeling the heat:searching for plant thermosensors. Trends in Plant Science, 2019, 24(3):210-219.
[52] 胡秋倩. 氮供应对水稻幼穗分化期高温下产量形成的影响及机理研究. 武汉:华中农业大学, 2021.
[53] Fu J, Huang Z, Wang Z, et al. Pre-anthesis nonstructural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Research, 2011, 123(2):170-182.
[54] Okamura M, Hirose T, Hashida Y, et al. Suppression of starch accumulation in ʻsugar leavesʼ of rice affects plant productivity under field conditions. Plant Production Science, 2017, 20(1):102-110.
[1] 龙卫华, 咸志慧, 张正, 阿里别里根·哈孜太, 祖勒胡玛尔·乌斯满江, 浦惠明, 胡茂龙. 长江下游非转基因抗除草剂杂交油菜品系在新疆伊犁河谷的适应性分析[J]. 作物杂志, 2025, (1): 111–116
[2] 储昭康, 王世济, 毕健健, 张林, 彭晨, 陈翔, 武文明. 江淮中部播期对夏玉米产量与灌浆特性的影响[J]. 作物杂志, 2025, (1): 117–122
[3] 张楷楷, 赵德明, 马菊花, 白鹏军, 马鹏, 陈蕙, 徐文杰, 黄彩霞, 刘众宇. 垄沟秸秆覆盖对旱作马铃薯土壤水热特征及产量的影响[J]. 作物杂志, 2025, (1): 139–146
[4] 胡聪聪, 李红宇, 孙显龙, 王童, 赵海成, 范名宇, 张巩亮. 秸秆还田与氮肥运筹对寒地水稻光合特性和产量的影响[J]. 作物杂志, 2025, (1): 147–154
[5] 徐晓征, 王建军. 光周期影响水稻抽穗的分子机制研究进展[J]. 作物杂志, 2025, (1): 15–25
[6] 吕树立, 丁芳, 郑东方. 芝麻蒴果光合特性及产量与品质对不同化学催熟剂的响应[J]. 作物杂志, 2025, (1): 155–161
[7] 周苗苗, 何瑞通, 李兰, 王红鑫, 彭浩源, 张玉博, 张丹, 王进斌, 罗新宁, 祁炳琴. 高密度种植下生长调节剂“玉黄金”对玉米光合特性及产量形成的影响[J]. 作物杂志, 2025, (1): 162–169
[8] 马鹏, 魏熙明, 丁芳菊, 张楷楷, 王巧丽, 邢古月, 常磊, 黄彩霞. 水氮调控对膜下滴灌马铃薯水分动态及产量的影响[J]. 作物杂志, 2025, (1): 170–178
[9] 朱子健, 陈娜娜, 吴月莹, 穰中文, 戴林建, 田明慧, 田峰, 易镇邪. 施氮量、种植密度和留叶数对湘西烟区湘烟7号产量和质量的影响[J]. 作物杂志, 2025, (1): 179–186
[10] 韩雪, 王英, 韩冬雨, 赵鑫瑶, 李晓婷, 张宏杰, 李立军. 施氮对燕麦间作三叶草产量、氮积累量及种间关系的影响[J]. 作物杂志, 2025, (1): 187–193
[11] 张宝龙, 何军, 张艺, 汤驰, 张宏涛, 廖薇, 李飞. 缓释肥对水稻生长特性、产量及干物质积累的影响[J]. 作物杂志, 2025, (1): 214–219
[12] 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 1–8
[13] 程生煜, 杨彩红, 崔文强, 姜晓敏. 不同耕种模式对玉米叶片生理及结构的影响[J]. 作物杂志, 2024, (6): 103–112
[14] 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126–131
[15] 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147–152
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!