作物杂志,2017, 第6期: 104–108 doi: 10.16035/j.issn.1001-7283.2017.06.018

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

土壤镉污染对箭筈豌豆生长、镉积累和营养物质吸收的影响

芮海云1,沈振国2,张芬琴3   

  1. 1泰州学院医药与化学化工学院,225300,江苏泰州
    2南京农业大学生命科学学院,210095,江苏南京
    3河西学院农业与生物技术学院,734000,甘肃张掖
  • 收稿日期:2017-08-07 修回日期:2017-09-08 出版日期:2017-12-15 发布日期:2018-08-26
  • 作者简介:芮海云,副教授,研究方向为植物环境生理
  • 基金资助:
    国家自然科学基金(31160053);泰州学院博士基金(TZXY2015JBJJ005)

Effects of Soil Cadmium Contamination on Growth, Cadmium Accumulation and Nutrient Uptake of Vicia sativa L.

Rui Haiyun1,Shen Zhenguo2,Zhang Fenqin3   

  1. 1College of Pharmacy and Chemistry & Chemical Engineering,Taizhou University,Taizhou 225300,Jiangsu,China;
    2College of Life Sciences,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China
    3College of Agriculture and Biotechnology,Hexi University,Zhangye 734000,Gansu,China
  • Received:2017-08-07 Revised:2017-09-08 Online:2017-12-15 Published:2018-08-26

摘要:

采用污染土盆栽法,研究箭筈豌豆(Vicia sativa L.)在镉(Cd)添加量为2.5和10.0mg/kg土壤中的生长状况、营养物质吸收和镉富集特征。结果表明,土壤镉添加对箭筈豌豆地上部和地下部生物量没有显著影响,但使种子的生物量降低。轻度和重度镉污染条件下,箭筈豌豆地下部的镉富集系数为21.12~26.39,地上部的镉富集系数为0.47~1.00,种子的镉富集系数为0.46~1.16,镉的转运系数为0.02~0.05。地下部镉含量达268.97mg/kg,地上部和种子的镉含量超国家食品限量标准,营养元素尤其是Fe、Zn、Mn和P的含量,受到镉添加的显著影响。因此,箭筈豌豆可用于镉污染土壤的植物修复,但需防范地上部和种子食用和饲用的安全风险;镉对营养元素吸收的影响是其生长受抑制的原因之一。

关键词: 箭筈豌豆, 土壤, 镉污染, 营养元素

Abstract:

We investigated the effects of soil with cadmium (Cd) addition of 2.5mg/kg and 10.0mg/kg on growth, Cd accumulation and nutrient uptake of V. sativa using sand culture experiments. Results showed that Cd addition didn’t have siginificant effects on aboveground and underground biomass, but decreased the seed biomass of V. sativa. Under light and severe cadmium pollution conditions, the Cd enrichment coefficient of underground part, aboveground part and seed are 21.12-26.39, 0.47-1.00 and 0.46-1.16, respectively, and the Cd transfer coefficient of V. sativa was 0.02~0.05. Cd accumulation in underground part reached 268.97mg/kg under 10.0mg/kg Cd addition condition and Cd accumulation in aboveground part and seed exceeded the national standards for food under 2.5mg/kg and 10.0mg/kg Cd addition condition. The concentrations of nutrients, especially Fe, Zn, Mn, and P were significantly affected by the Cd addition. Results indicated that V. sativa could be used for phytoremediation of Cd contaminated soil, but there were needs to guard against risk of food Cd contamination. Effect of Cd on nutrient uptake was one of the causes for the growth inhibition of V. sativa under Cd stress.

Key words: Vicia sativa L., Soil, Cadmium, Nutrient elements

表1

土壤镉添加对箭筈豌豆生长的影响"

收获时间
Harvest time
处理
Treatment
地下部的干重
Underground part dry weight
地上部的干重
Aboveground part dry weight
种子的干重
Seed dry weight
豆荚的干重
Pod dry weight
播种后35d 35 days after sowing 对照CK 0.42±0.08b 1.81±0.13b / /
T1 0.37±0.05b 1.64±0.24b / /
T2 0.38±0.04b 1.69±0.05b / /
播种后55d 55 days after sowing 对照CK 1.46±0.04a 3.49±0.46a 0.45±0.07a 0.46±0.04a
T1 1.43±0.06a 3.41±0.16a 0.36±0.08ab 0.36±0.08ab
T2 1.42±0.05a 3.59±0.40a 0.30±0.04b 0.32±0.07b

表2

土壤镉添加对箭筈豌豆镉积累的影响"

项目Item 播种后35d 35days after sowing 播种后55d 55days after sowing
对照CK T1 T2 对照CK T1 T2
地下部镉积累
Underground part cadmium accumulation
0.87±0.12d
57.10±9.37c
215.47±6.27b
0.96±0.15d
71.24±11.24c
268.97±21.09a
地下部镉富集系数
Underground part cadmium enrichment coefficient
4.34±0.60c
21.15±3.47b
21.12±0.61b
4.80±0.75c
26.39±4.16a
26.37±2.07a
地上部(不含果实)镉积累
Aboveground part cadmium accumulation
0.12±0.04d
2.58±0.35c
4.83±0.52b
0.11±0.02d
2.69±0.89c
6.19±0.02a
地上部镉富集系数
Aboveground part cadmium enrichment coefficient
0.60±0.18b
0.95±0.13a
0.47±0.05b
0.57±0.12b
1.00±0.33a
0.61±0.01b
转运系数
Transfer coefficient
0.14±0.06a
0.05±0.01b
0.02±0.00b
0.12±0.04a
0.04±0.01b
0.02±0.00b
种子镉积累
Seed cadmium accumulation
/
/
/
0.05±0.01c
3.12±0.23b
4.69± 0.14a
种子镉富集系数
Seed cadmium enrichment coefficient
/
/
/
0.26±0.01c
1.16±0.05a
0.46±0.01b
豆荚镉积累
Pod cadmium accumulation
/
/
/
0.05±0.01c
2.75±0.33b
4.45±0.55a
豆荚镉富集系数
Pod cadmium enrichment coefficient
/
/
/
0.26±0.03c
1.00±0.20a
0.44±0.05b

表3

土壤镉添加对播种后55d收获的箭筈豌豆营养元素含量的影响"

植物组织Tissues 处理Treatment Fe(μg/kg) Zn(μg/kg) Mn(μg/kg) Mg(mg/kg) Ca(mg/kg) P(mg/kg)
地上部 对照CK 193.50±13.69a 22.04±1.58a 43.60±5.62a 5.82±0.41a 33.39±2.91a 2.43±0.05b
Aboveground part T1 168.97±6.60b 19.56±2.06ab 34.63±1.53b 5.77±0.58a 29.27±1.50a 2.62±0.26ab
T2 156.30±9.16b 17.64±0.24b 33.44±2.79b 5.65±0.31a 29.84±3.15a 2.84±0.14a
地下部 对照CK 3 533.90±429.22a 43.79±3.37a 90.94±5.62b 7.65±0.62b 25.99±3.20a 3.59±0.22a
Underground part T1 3 619.86±207.66a 40.15±1.64ab 91.58±6.42b 9.09±0.56a 27.21±0.31a 3.64±0.14a
T2 3 556.88±331.86a 37.88±2.68b 107.02±4.44a 8.94±0.67a 24.98±0.41a 3.76±0.19a
种子Seed 对照CK 76.09±9.08a 22.01±3.09b 14.12±0.74a 1.59±0.09b 1.54±0.11b 5.34±0.35b
T1 85.18±7.59a 25.02±0.54ab 14.54±0.76a 1.74±0.07a 1.53±0.15b 6.06±0.34a
T2 86.61±3.91a 26.15±1.17a 14.54±1.05a 1.67±0.04ab 1.79±0.03a 5.61±0.27ab
豆荚Pod 对照CK 149.05±5.95a 22.52±3.09a 27.45±2.48a 4.40±0.30b 11.98±0.81ab 5.48±0.63b
T1 138.38±5.65a 24.14±2.81a 26.56±2.37a 4.49±0.19b 11.71±0.74b 6.44±0.46a
T2 137.55±13.34a 25.29±0.97a 28.06±3.23a 5.10±0.29a 13.55±0.73a 5.58±0.21ab
[1] 芮海云, 张兴兴, 沈振国 , 等. 箭筈豌豆镉胁迫下的失水胁迫和渗透调节物质的积累.作物杂志, 2017(3):69-74.
doi: 10.16035/j.issn.1001-7283.2017.03.013
[2] Verbruggen N, Hermans C, Schat H , et al. Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 2009,12(3):364-372.
doi: 10.1016/j.pbi.2009.05.001 pmid: 19501016
[3] Maestri E, Marmiroli M, Visioli G , et al. Metal tolerance and hyperaccumulation:costs and trade-offs between traits and environment. Environmental & Experimental Botany, 2010,68(1):1-13.
doi: 10.1016/j.envexpbot.2009.10.011
[4] 张芬琴 . 镉胁迫对二种不同耐性豆科植物生长与活性氧代谢的影响及水杨酸对镉毒害的缓解效应. 南京:南京农业大学, 2009.
[5] Zhao F J, Jiang R F, Dunham S J , et al. Cadmium uptake,translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist, 2006,172(4):646-654.
doi: 10.1111/j.1469-8137.2006.01867.x pmid: 17096791
[6] Yu Z G, Zhou Q X . Growth responses and cadmium accumulation of Mirabilis jalapa L.under interaction between cadmium and phosphorus. Journal of Hazardous Materials, 2009,167:38-43.
doi: 10.1016/j.jhazmat.2008.12.082
[7] 李铭红, 李侠, 宋瑞生 . 受污农田中农作物对重金属镉的富集特征研究. 中国生态农业学报, 2008,16(3):675-679.
[8] Nocito F F, Lancilli C, Dendena B , et al. Cadmium retention in rice roots is influenced by cadmium availability,chelation and translocation. Plant Cell & Environment, 2011,34(6):994-1008.
[9] Mclaughlin M J, Parker D R, Clarke J M . Metals and micronutrients-food safety issues. Field Crops Research, 1999,60(1-2):143-163.
doi: 10.1016/S0378-4290(98)00137-3
[10] Clemens S , Aarts M G M,Thomine S,et al.Plant science:the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013,18(2):92-99.
doi: 10.1016/j.tplants.2012.08.003 pmid: 22981394
[11] 孙建云, 沈振国 . 镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响. 应用生态学报, 2007,18(11):2605-2610.
[12] Metwally A, Safronova V I, Belimov A A , et al. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 2005,56(409):167-178.
doi: 10.1093/jxb/eri017 pmid: 15533881
[13] Rogers E E, Eide D J, Guerinot M L . Altered selectivity in an Arabidopsis metal transporter. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(22):12356-12360.
doi: 10.1073/pnas.210214197
[14] Hernández L E , Lozano-Rodrı́Guez E,Gárate A,et al.Influence of cadmium on the uptake,tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Science, 1998,132(2):139-151.
doi: 10.1016/S0168-9452(98)00011-9
[15] Küpper H, Kochian L V . Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator,Thlaspi caerulescens (Ganges population). New Phytologist, 2010,185(1):114-129.
[16] Xu Q, Min H, Cai S , et al. Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere, 2012,89(1):114-120.
doi: 10.1016/j.chemosphere.2012.04.046 pmid: 22609454
[17] Gussarsson M, Asp H, Adalsteinsson S , et al. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO). Journal of Experimental Botany, 1996,47(295):211-215.
doi: 10.1093/jxb/47.2.211
[18] Brune A, Dietz K J . A comparative analysis of element composition of barley roots and leaves under cadmium-,molybdenum-,nickel-,and zinc-stress. Journal of Plant Nutrition, 1995,18:853-868.
doi: 10.1080/01904169509364943
[19] Dong J, Wu F, Zhang G . Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere, 2006,64(10):1659-1666.
doi: 10.1016/j.chemosphere.2006.01.030
[20] Monteiro M S, Santos C, Soares A M , et al. Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology & Environmental Safety, 2009,72(3):811-818.
doi: 10.1016/j.ecoenv.2008.08.002 pmid: 18952284
[21] 段昌群, 王焕校, 曲仲湘 . 重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究. 环境科学, 1992,13(5):31-35.
[1] 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141–147
[2] 梁淑敏,王颖,潘哲超,张磊,徐宁生,李燕山,杨琼芬,李先平,白建明,姚春光,卢丽丽,隋启君. 不同栽培模式的土壤水热效应对马铃薯产量及结薯规律的影响[J]. 作物杂志, 2018, (3): 90–96
[3] 石晓华,杨海鹰,康文钦,秦永林,樊明寿,贾立国. 不同施氮量对马铃薯-小麦轮作体系产量及土壤氮素平衡的影响[J]. 作物杂志, 2018, (2): 108–116
[4] 王晓娟,赵圆峰,王娟玲,翟广谦,刘恩科,董春林,闫六英,张伟,姜春霞,张正. 不同覆盖方式对大棚滴灌番茄水分利用和经济效益的影响[J]. 作物杂志, 2018, (2): 103–107
[5] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
[6] 崔江辉,崔福柱,薛建福,郝建平,杜天庆,孙隆祥. 化肥减施对小麦-高粱系统土壤团聚体分布及其稳定性的影响[J]. 作物杂志, 2018, (1): 126–132
[7] 朱英杰,常旭虹,王德梅,杨玉双,王雨,吕冰,马瑞琦,刘莹,王玉娇,赵广才,陶志强. 黑土与潮土对不同春小麦营养品质的影响[J]. 作物杂志, 2017, (6): 84–90
[8] 贾有余,张雄,高宇,张剑,任永峰,尹秀兰,赵沛义,刁生鹏,聂晶,狄彩霞,安昊. 覆膜方式对旱作农田土壤水热状况及向日葵产量的影响[J]. 作物杂志, 2017, (6): 72–78
[9] 宋莉,廖万有,王烨军,苏有健,张永利,罗毅,廖珺,吴卫国. 旱地作物间作绿肥研究进展[J]. 作物杂志, 2017, (6): 7–11
[10] 吴建富,卢志红,胡丹丹. 科学认识有机肥料在农业生产中的作用[J]. 作物杂志, 2017, (5): 1–6
[11] 卢培娜,刘景辉,赵宝平,李立军,雷雪峰,张丰屹. 菌肥对盐碱地土壤特性及燕麦根系分泌物的影响[J]. 作物杂志, 2017, (5): 85–92
[12] 黄刘亚,孙永波,刘书武,张永辉,年夫照,顾勇. 生物炭对植烟土壤主要性状和烤烟产质量影响的研究进展[J]. 作物杂志, 2017, (4): 15–20
[13] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[14] 张文超,王玉凤,张翼飞,徐晶宇,吴琼,陈天宇,张鹏飞,庞晨,唐春双,付健,杨克军. 耕作方式对松嫩平原半干旱区土壤养分含量和玉米产量的影响[J]. 作物杂志, 2017, (4): 123–128
[15] 芮海云,张兴兴,沈振国,张芬琴. 箭筈豌豆镉胁迫下的失水胁迫和渗透调节物质的积累[J]. 作物杂志, 2017, (3): 69–74
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .