作物杂志,2018, 第3期: 15–24 doi: 10.16035/j.issn.1001-7283.2018.03.003

• 专题综述 • 上一篇    下一篇

植物中镉及其螯合物相关转运蛋白研究进展

曹玉巧,聂庆凯,高云,许自成黄五星,   

  1. 河南农业大学烟草学院,450002,河南郑州
  • 收稿日期:2018-01-19 修回日期:2018-04-27 出版日期:2018-06-20 发布日期:2018-06-20
  • 作者简介:曹玉巧,在读研究生,主要从事烟草品质生态与质量评价研究
  • 基金资助:
    河南省教育厅高等学校重点科研项目“镉胁迫下黄花烟草与红花烟草生物量分配差异的生理与分子机制研究”(17A210020)

The Studies on Cadmium and Its Chelate Related Transporters in Plants

Cao Yuqiao,Nie Qingkai,Gao Yun,Xu Zicheng,Huang Wuxing   

  1. College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2018-01-19 Revised:2018-04-27 Online:2018-06-20 Published:2018-06-20

摘要:

镉是一种毒性极强的重金属污染物,土壤和大气中的镉通过植物根和叶的吸收在其体内积累。镉不仅影响植物的正常生理代谢过程,严重降低作物产量和品质,还可通过食物链的传递和富集危害人类身体健康。镉胁迫条件下植物会通过一系列的生理反应来减轻镉损伤,其中镉及其螯合物相关转运蛋白在植物抗镉毒害中起重要作用。金属转运蛋白是一类位于植物组织膜上的运输蛋白,其参与金属元素的吸收、转运和区隔过程。目前利用基因工程和现代分子生物学技术,已经鉴定出一系列镉及其螯合物相关转运蛋白,主要包括锌/铁转运蛋白(ZIP)、天然抗性相关巨噬细胞蛋白(NRAMP)、重金属ATP酶(HMA)、金属耐受蛋白(MTP)、阳离子交换体(CAX)、ATP结合盒转运蛋白(ABC)、黄色条纹转运蛋白(YSL)等家族。本文从植物细胞、亚细胞水平综述与镉吸收和转运相关的转运蛋白的分子生物学研究进展,为更好地了解镉在植物体内的差异积累原理、植物抗镉毒害机理和植物吸收转运镉的分子机制提供理论依据。

关键词: 镉, 镉螯合物, 相关转运蛋白, 功能

Abstract:

Cadmium is a highly toxic heavy metal pollutant. Cadmium from soil and atmospheric is accumulated in plant through the absorption of roots or leaves. Cadmium not only affects the physiological metabolism of plants, and reduces crop yield and quality seriously, but also endangers human health through the transmission and enrichment of food chain. Plant can alleviate cadmium damage through a series of physiological responses under cadmium stress, and cadmium and its chelate related transporters play an important role in plant resistance to cadmium toxicity. Metal transporters are a class of transport proteins located on the membrane which participate in the absorption, transport and segregation of metal elements. At present, a series of transporter proteins related to cadmium and its chelate have been identified by genetic engineering and molecular biology techniques, including Zrt/Irt-like Protein (ZIP), Natural Resistance Associated Macrophage Protein (NRAMP), Heavy Metal ATPase (HMA), Metal Tolerance Protein (MTP), Cation Exchanger (CAX), ATP-binding Cassette Transporters (ABC), Yellow Stripe-Like Transporter (YSL) and other families. This paper focuses on the progress of molecular biology of the transporters associated with cadmium absorption and transport on the cellular and subcellular levels. In order to provide a basis for better understanding of the cadmium accumulation in plants, plant resistance to cadmium toxicity and the molecular mechanism of cadmium uptake.

Key words: Cadmium, Cadmium chelate, Related transporters, Function

表1

可转运Cd的ZIP家族成员"

蛋白名称
Protein name
亚细胞定位
Subcellular localization
作用过程
Action process
NcZNT1 原生质膜 参与Cd由根向地上部的转运
AtIRT1 原生质膜 运输 Cd 进入根部细胞
AtZIP1 液泡膜 参与Cd由根向地上部的转运
AtZIP2 原生质膜 参与Cd由根向地上部的转运
SaZIP3 原生质膜 运输 Cd 进入根部细胞
AtZIP4 原生质膜 运输 Cd 进入细胞
OsZIP6 液泡膜 运输Cd进入液泡

表2

可转运Cd的NRAMP家族成员"

蛋白名称
Protein name
亚细胞定位
Subcellular localization
作用过程
Action process
MbNRAMP1 原生质膜 运输Cd进入细胞
AtNRAMP3 液泡膜 运输液泡Cd进入细胞质
AtNRAMP4 液泡膜 运输液泡Cd进入细胞质
OsNRAMP5 原生质膜 运输Cd进入细胞
AtNRAMP6 液泡膜 细胞内Cd的转运

表3

可转运Cd的HMA家族成员"

蛋白名称
Protein name
亚细胞定位
Subcellular localization
作用过程
Action process
AtHMA1 液泡膜 细胞内Cd的转运
AtHMA2 原生质膜 参与Cd的木质部装载过程
AtHMA3 液泡膜 运输Cd进入液泡
NcHMA4 液泡膜 参与Cd由根向地上部的转运

表4

可转运Cd的MTP家族成员"

蛋白名称
Protein name
亚细胞定位
Subcellular localization
作用过程
Action process
OsMTP1 液泡膜 运输Cd从细胞质进入液泡
SpMTP11 高尔基体膜 运输Cd进入高尔基体
BjCET2 原生质膜 将Cd运出细胞质
BjCET3 原生质膜 将Cd运出细胞质
BjCET4 原生质膜 将Cd运出细胞质

表5

可转运Cd的CAX家族成员"

蛋白名称
Protein name
亚细胞定位
Subcellular localization
作用过程
Action process
AtCAX1 液泡膜 运输Cd进入液泡
AtCAX2 液泡膜 运输Cd进入液泡
AtCAX4 液泡膜 运输Cd进入液泡

表6

可转运PC-Cd螯合物的ABC家族成员"

蛋白名称
Protein name
亚细胞定位
Subcellular localization
作用过程
Action process
ScYCF1 液泡膜 运输(GSH)2-Cd螯合物进入液泡
AtABCC1 液泡膜 运输PC-Cd螯合物进入液泡
AtABCC2 液泡膜 运输PC-Cd螯合物进入液泡
AtABCC3 液泡膜 运输PC-Cd螯合物进入液泡
AtABCC6 液泡膜 运输PC-Cd螯合物进入液泡
AtPDR8 原生质膜 将Cd运出细胞质
MDR1 原生质膜 将Cd运出细胞质
AtATM3 线粒体膜 运输PC-Cd螯合物进入线粒体

表7

可转运NA-Cd螯合物的YSL家族成员"

蛋白名称
Protein name
亚细胞定位
Subcellular localization
作用过程
Action process
ZmYS1 原生质膜 运输PS-Cd螯合物进入根部细胞
BjYSL6 液泡膜 运输NA-Cd螯合物进入液泡
BjYSL7 原生质膜 参与NA-Cd螯合物由根向地上部的转运
SnYSL3 原生质膜 运输NA-Cd螯合物进入根部细胞
[1] Li L Z, Chen T Peijnenburg W J G M ,et al. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings. Environmental Pollution, 2017,221:351-358.
[2] 芮海云, 沈振国, 张芬琴 . 土壤镉污染对箭筈豌豆生长、镉积累和营养物质吸收的影响. 作物杂志, 2017(6):104-108.
doi: 10.16035/j.issn.1001-7283.2017.06.018
[3] Li L, Tu C, Wu L , et al. Pathways of root uptake and membrane transport of Cd 2+ in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola . Environmental Toxicology & Chemistry, 2017,36(4):1038-1046.
[4] Choppala G, Saifullah, Bolan N , et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences, 2014,33(5):374-391.
doi: 10.1080/07352689.2014.903747
[5] Liu X, Peng K, Wang A , et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 2010,78(9):1136-1141.
doi: 10.1016/j.chemosphere.2009.12.030
[6] Luo Z B, He J, Polle A , et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 2016,34(6):1131-1148.
[7] He J, Li H, Luo J , et al. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus× canescens. Plant Physiology, 2013,162(1):424-439.
doi: 10.1104/pp.113.215681
[8] Tiong J, Mcdonald G K, Genc Y , et al. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytologist, 2014,201(1):131-143.
doi: 10.1111/nph.12468 pmid: 24033183
[9] Lin Y F, Aarts M G . The molecular mechanism of zinc and cadmium stress response in plants. Cellular & Molecular Life Sciences, 2012,69(19):3187-3206.
doi: 10.1007/s00018-012-1089-z pmid: 22903262
[10] Chen W R, Feng Y, Chao Y E . Genomic analysis and expression pattern of OsZIP1,OsZIP3,and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology, 2008,55(3):400-409.
doi: 10.1134/S1021443708030175
[11] Verbruggen N, Hermans C, Schat H . Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 2009,181(4):759-776.
doi: 10.1111/j.1469-8137.2008.02748.x pmid: 19192189
[12] Milner M J, Craft E, Yamaji N , et al. Characterization of the high affinity Zn transporter from Noccaea caerulescens,NcZNT1,and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytologist, 2012,195(1):113-123.
doi: 10.1111/j.1469-8137.2012.04144.x
[13] Pedas P, Ytting C K, Fuglsang A T , et al. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiology, 2008,148(1):455-466.
[14] Connolly E L, Fett J P, Guerinot M L . Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 2002,14(6):1347-1357.
[15] Milner M J, Seamon J, Craft E , et al. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 2013,64(1):369-381.
[16] Gao J, Sun L, Yang X , et al. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance. PLoS ONE, 2013,8(6):e64643.
[17] 马晓晓 . 锌/镉超积累植物东南景天(Sedum alfredii Hance)两个锌转运蛋白基因的功能研究. 杭州:浙江大学, 2015.
[18] Zeng L, Zhu T, Gao Y , et al. Effects of Ca addition on the uptake,translocation,and distribution of Cd in Arabidopsis thaliana. Ecotoxicology & Environmental Safety, 2017,139:228-237.
[19] Tian B, Zhang Y, Jin Z , et al. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Frontiers in Bioscience-Landmark, 2017,22:530-538.
pmid: 27814630
[20] Kavitha P G, Kuruvilla S, Mathew M K . Functional characterization of a transition metal ion transporter,OsZIP6 from rice (Oryza sativa L.). Plant Physiology & Biochemistry, 2015,97(6):165-174.
[21] Pottier M, Oomen R, Picco C , et al. Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. Plant Journal, 2015,83(4):625-637.
[22] Konlechner C, Türktaş M, Langer I , et al. Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. Environmental Pollution, 2013,178(100):121-127.
[23] Ehrnstorfer I A, Geertsma E R, Pardon E , et al. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nature Structural & Molecular Biology, 2014,21(11):990-996.
[24] Bozzi A T, Bane L B, Weihofen W A , et al. Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(37):10310-10315.
doi: 10.1073/pnas.1607734113 pmid: 27573840
[25] Xiao H, Yin L, Xu X , et al. The iron-regulated transporter,MbNRAMP1,isolated from malus baccata is involved in Fe,Mn and Cd trafficking. Annals of Botany, 2008,102(6):881-889.
[26] He J, Li H, Ma C , et al. Overexpression of bacterial γ‐glutamylcysteine synthetase mediates changes in cadmium influx,allocation and detoxification in poplar. New Phytologist, 2015,205(1):240-254.
[27] Lanquar V, Ramos M S, Lelièvre F , et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiology, 2010,152(4):1986-1999.
[28] Oomen R J, Wu J, Lelièvre F , et al. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytologist, 2009,181(3):637-650.
[29] Ishimaru Y, Takahashi R, Bashir K , et al. Characterizing the role of rice NRAMP5 in manganese,iron and cadmium transport. Scientific Reports, 2012,2:286.
doi: 10.1038/srep00286 pmid: 22368778
[30] Wu D, Yamaji N, Yamane M , et al. The HvNramp5 transporter mediates uptake of cadmium and manganese,but not iron. Plant Physiology, 2016,172(3):1899-1910.
doi: 10.1104/pp.16.01189 pmid: 27621428
[31] Cailliatte R, Lapeyre B, Briat J F , et al. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochemical Journal, 2009,422(2):217-228.
doi: 10.1042/BJ20090655 pmid: 19545236
[32] Baxter I, Tchieu J, Sussman M R , et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology, 2003,132(2):618-628.
[33] Smith A T, Smith K P, Rosenzweig A C . Diversity of the metal-transporting P1B-type ATPases. Journal of Biological Inorganic Chemistry, 2014,19(6):947-960.
doi: 10.1007/s00775-014-1129-2 pmid: 4119550
[34] Migeon A, Blaudez D, Wilkins O , et al. Genome-wide analysis of plant metal transporters,with an emphasis on poplar. Cellular & Molecular Life Sciences, 2010,67(22):3763-3784.
doi: 10.1007/s00018-010-0445-0 pmid: 20623158
[35] Li D, Xu X, Hu X , et al. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa. Frontiers in Plant Science, 2015,6:1149.
[36] Moreno I, Norambuena L, Maturana D , et al. AtHMA1 is a thapsigargin-sensitive Ca 2+/heavy metal pump . Journal of Biological Chemistry, 2008,283(15):9633-9641.
doi: 10.1074/jbc.M800736200 pmid: 18252706
[37] Eren E, Argüello J M . Arabidopsis HMA2,a divalent heavy metal-transporting P1B-type ATPase,is involved in cytoplasmic Zn 2+ homeostasis . Plant Physiology, 2004,136(3):3712-3723.
[38] Chong K E W, Jarvis R S, Sherson S M , et al. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase,HMA2,in Arabidopsis thaliana. New Phytologist, 2009,181(1):79-88.
[39] Morel M, Crouzet J, Gravot A , et al. AtHMA3,a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 2009,149(2):894-904.
doi: 10.1104/pp.108.130294 pmid: 19036834
[40] Papoyan A, Kochian L V . Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 2004,136(3):3814-3823.
[41] Xing J P, Jiang R F, Ueno D , et al. Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytologist, 2008,178(2):315-325.
[42] Craciun A R, Meyer C L, Chen J , et al. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. Journal of Experimental Botany, 2012,63(11):4179-4189.
doi: 10.1093/jxb/ers104
[43] Mäser P, Thomine S, Schroeder J I , et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 2001,126(4):1646-1667.
doi: 10.1104/pp.126.4.1646 pmid: 11500563
[44] Kawachi M, Kobae Y, Kogawa S , et al. Amino acid screening based on structural modeling identifies critical residues for the function,ion selectivity and structure of Arabidopsis MTP1. Febs Journal, 2012,279(13):2339-2356.
doi: 10.1111/j.1742-4658.2012.08613.x
[45] Ovečka M, Takáč T . Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnology Advances, 2013,32(1):73-86.
doi: 10.1016/j.biotechadv.2013.11.011 pmid: 24333465
[46] Sylvain J, Damien B, Barbara M , et al. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics, 2007,8(1):1-16.
doi: 10.1186/1471-2164-8-1
[47] Yuan L, Yang S, Liu B , et al. Molecular characterization of a rice metal tolerance protein,OsMTP1. Plant Cell Reports, 2012,31(1):67-79.
doi: 10.1007/s00299-011-1140-9
[48] Persans M W, Nieman K, Salt D E . Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(17):9995-10000.
[49] Peiter E, Montanini B, Gobert A , et al. A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(20):8532-8537.
[50] Lang M, Hao M, Fan Q , et al. Functional characterization of BjCET3 and BjCET4,two new cation-efflux transporters from Brassica juncea L. Journal of Experimental Botany, 2011,62(13):4467-4480.
doi: 10.1093/jxb/err137
[51] Jin X, Chai T, Zhang Y , et al. The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Reports, 2009,28(8):1235-1242.
doi: 10.1007/s00299-009-0723-1
[52] Shigaki T, Rees I, Nakhleh L , et al. Identification of three distinct phylogenetic groups of CAX Cation/Proton antiporters. Journal of Molecular Evolution, 2006,63(6):815-825.
doi: 10.1007/s00239-006-0048-4 pmid: 17086450
[53] Pittman J K, Hirschi K D . CAX-ing a wide net: Cation/H +,transporters in metal remediation and abiotic stress signalling . Plant Biology, 2016,18(5):741-749.
[54] Korenkov V, Hirschi K, Crutchfield J D , et al. Enhancing tonoplast Cd/H antiport activity increases Cd,Zn,and Mn tolerance,and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta, 2007,226(6):1379-1387.
doi: 10.1007/s00425-007-0577-0
[55] Manohar M, Shigaki T, Hirschi K D . Plant Cation/H +,exchangers (CAXs): biological functions and genetic manipulations . Plant Biology, 2011,13(4):561-569.
doi: 10.1111/j.1438-8677.2011.00466.x pmid: 21668596
[56] Shigaki T, Barkla B J, Miranda-Vergara M C , et al. Identification of a crucial histidine involved in metal transport activity in the Arabidopsis Cation/H + exchanger CAX1 . Journal of Biological Chemistry, 2005,280(34):30136-30142.
[57] Williams K A . Expression of an Arabidopsis Ca 2+/H + antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation . Journal of Plant Physiology, 2011,168(2):167-173.
doi: 10.1016/j.jplph.2010.06.005
[58] Hirschi K D, Korenkov V D, Wilganowski N L , et al. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiology, 2000,124(1):125-133.
[59] Hirschi K D . Strike while the ionome is hot: making the most of plant genomic advances. Trends in Biotechnology, 2003,21(12):520-521.
doi: 10.1016/j.tibtech.2003.09.013 pmid: 14624858
[60] Hu P, Wang Y, Przybyłowicz W J , et al. Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola,grown naturally. Plant and Soil, 2015,388(1):267-282.
[61] Iwashita T . Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta, 2005,221(6):928-936.
doi: 10.1007/s00425-005-1491-y
[62] Yuan H, Zhang Y, Huang S , et al. Effects of exogenous glutathione and cysteine on growth,lead accumulation,and tolerance of Iris lactea var. chinensis. Environmental Science and Pollution Research, 2015,22(4):2808-2816.
[63] Heeg C . Analysis of the Arabidopsis O-acetylserine (thiol) lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell, 2008,20(1):168-185.
[64] Ning H, Zhang C, Yao Y , et al. Overexpression of a soybean O-acetylserine (thiol) lyase-encoding gene GmOASTL4 in tobacco increases cysteine levels and enhances tolerance to cadmium stress. Biotechnology Letters, 2010,32(4):557-564.
doi: 10.1007/s10529-009-0178-z
[65] Vatamaniuk O K, Mari S, Lang A , et al. Phytochelatin synthase,a dipeptidyltransferase that undergoes multisite acylation with γ-Glutamylcysteine during catalysis stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana pcs1-catalyzed phytochelatin synthesis. Journal of Biological Chemistry, 2004,279(21):22449-22460.
[66] Clemens S . Toxic metal accumulation,responses to exposure and mechanisms of tolerance in plants. Biochimie, 2006,88(11):1707-1719.
doi: 10.1016/j.biochi.2006.07.003 pmid: 16914250
[67] Li J, Guo J, Xu W , et al. Enhanced cadmium accumulation in transgenic tobacco expressing the phytochelatin synthase gene of Cynodon dactylon L. Journal of Integrative Plant Biology, 2006,48(8):928-937.
[68] Dalcorso G, Farinati S, Furini A . Regulatory networks of cadmium stress in plants. Plant Signaling & Behavior, 2010,5(5):663-667.
doi: 10.4161/psb.5.6.11425 pmid: 20404494
[69] Guo W J, Meetam M, Goldsbrough P B . Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology, 2008,146(4):1697-1706.
[70] Zhang J, Zhang M, Tian S , et al. Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS ONE, 2014,9(7):e102750.
[71] Deinlein U, Clemens S . Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell, 2012,24(2):708-723.
doi: 10.1105/tpc.111.095000
[72] Sánchezfernández R, Davies T G, Coleman J O , et al. The Arabidopsis thaliana ABC protein superfamily,a complete inventory. Journal of Biological Chemistry, 2001,276(32):30231-30244.
doi: 10.1074/jbc.M103104200 pmid: 11346655
[73] Dean M . The genetics of ATP-binding cassette transporters. Methods in Enzymology, 2005,400:409-429.
doi: 10.1016/S0076-6879(05)00024-8 pmid: 16399363
[74] Verrier P J, Bird D, Burla B , et al. Plant ABC proteins-a unified nomenclature and updated inventory. Trends in Plant Science, 2008,13(4):151-159.
doi: 10.1016/j.tplants.2008.02.001 pmid: 18299247
[75] Wanke D, Kolukisaoglu H Ü, Sauer N , et al. An update on the ABCC transporter family in plants: many genes,many proteins,but how many functions? Plant Biology, 2010,12(S1):15-25.
[76] Song W Y, Park J, Mendoza-Cózatl D G , et al.Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(49):21187-21192.
[77] Li Z S, Lu Y P, Zhen R G , et al. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(1):42-47.
[78] Song W Y, Sohn E J, Martinoia E , et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnology, 2003,21(8):914-919.
doi: 10.1038/nbt850 pmid: 12872132
[79] Park J, Song W, Ko D , et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant Journal for Cell & Molecular Biology, 2012,69(2):278-288.
doi: 10.1111/j.1365-313X.2011.04789.x pmid: 21919981
[80] Brunetti P, Zanella L, Paolis A D , et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany, 2015,66(13):3815-3829.
[81] Gaillard S, Jacquet H, Vavasseur A , et al. AtMRP6/AtABCC6,an ATP-Binding Cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biology, 2008,8(1):22-30.
[82] Kim D Y, Bovet L, Maeshima M , et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant Journal, 2007,50(2):207-218.
doi: 10.1111/j.1365-313X.2007.03044.x pmid: 17355438
[83] Achardjoris M, Hb V D B V S, riessen A J , et al. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli. Biochemistry, 2005,44(15):5916-5922.
[84] Kim D Y, Bovet L, Kushnir S , et al. AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiology, 2006,140(3):922-932.
doi: 10.1104/pp.105.074146 pmid: 16461380
[85] Bhuiyan M S U, Min S R, Jeong W J , et al. Overexpression of AtATM3,in Brassica juncea,confers enhanced heavy metal tolerance and accumulation. Plant Cell, Tissue and Organ Culture, 2011,107(1):69-77.
[86] Curie C, Cassin G, Couch D , et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009,103(1):1-11.
[87] Gendre D, Czernic P, Conéjéro G , et al. TcYSL3,a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens,encodes a nicotianamine-Ni/Fe transporter. Plant Journal, 2007,49(1):1-15.
[88] Curie C, Panaviene Z, Loulergue C , et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe (Ⅲ) uptake. Nature, 2001,409(6818):346-349.
doi: 10.1038/35053080 pmid: 11201743
[89] Schaaf G, Ludewig U, Erenoglu B E , et al. ZmYS1 functions as a proton-coupled zymporter for phytosiderophore- and nicotianamine-chelated metals. Journal of Biological Chemistry, 2004,279(10):9091-9096.
[90] Das S, Sen M, Saha C , et al. Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. Planta, 2011,234(1):139-156.
doi: 10.1007/s00425-011-1376-1
[91] Wang J W, Li Y, Zhang Y X , et al. Molecular cloning and characterization of a Brassica juncea,yellow stripe-like gene,BjYSL7,whose overexpression increases heavy metal tolerance of tobacco. Plant Cell Reports, 2013,32(5):651-662.
doi: 10.1007/s00299-013-1398-1
[92] Feng S, Tan J, Zhang Y , et al. Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum. Plant Cell Reports, 2017,36(2):281-296.
[93] Shi X, Sun H, Chen Y , et al. Transcriptome sequencing and expression analysis of cadmium (Cd) transport and detoxification related genes in Cd-Accumulating Salix integra. Frontiers in Plant Science, 2016,7:1577.
[1] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
[2] 芮海云,沈振国,张芬琴. 土壤镉污染对箭筈豌豆生长、镉积累和营养物质吸收的影响[J]. 作物杂志, 2017, (6): 104–108
[3] 芮海云,张兴兴,沈振国,张芬琴. 箭筈豌豆镉胁迫下的失水胁迫和渗透调节物质的积累[J]. 作物杂志, 2017, (3): 69–74
[4] 高志勇,谢恒星,王志平,刘史力. 植物突变体库的作用及构建研究进展[J]. 作物杂志, 2016, (6): 16–19
[5] 韩赞平,陈彦惠,郭书磊,祖小峰,王顺喜,赵西拥. 玉米抗逆基因ZmqLTG3-1的克隆及功能分析[J]. 作物杂志, 2016, (4): 47–55
[6] 张雪,尹悦佳,范贝,李慧杰,费小钰,崔喜艳. 植物Dof转录因子的结构特点及功能研究进展[J]. 作物杂志, 2016, (2): 14–20
[7] 郭媛, 邱财生, 龙松华, 等. 种子萌发期亚麻种质资源耐镉性的鉴定评价[J]. 作物杂志, 2015, (6): 39–43
[8] 程式华. 中国超级稻育种技术的创新与发展[J]. 作物杂志, 2012, (6): 1–3
[9] 董旭, 张晓平, 赵开军, 王春连. 水稻CBB30Ⅰ抗白叶枯病相关基因的差异表达分析[J]. 作物杂志, 2012, (4): 20–25
[10] 滕卫丽, 韩英鹏, 赵桂云, 等. 大豆叶黄素的研究进展[J]. 作物杂志, 2012, (1): 9–12
[11] 梅丽娜, 袁庆华, 姚拓, 等. 不同品种苜蓿芽期对重金属镉的耐性研究[J]. 作物杂志, 2010, (2): 15–18
[12] 于军香. 镉污染对小豆种子萌发和幼苗生长的影响[J]. 作物杂志, 2009, (3): 106–107
[13] 李小蕊, 陈国祥, 项秀兰, 等. 高产杂交稻两优培九功能叶自然衰老的生理特性研究[J]. 作物杂志, 2008, (5): 43–47
[14] 吴昆仑. 青稞功能元素与食品加工利用简述[J]. 作物杂志, 2008, (2): 15–17
[15] 赵久然, 李云伏. 玉米生产在北京都市农业中的地位和作用[J]. 作物杂志, 2007, (5): 5–7
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .