作物杂志,2018, 第2期: 11–16 doi: 10.16035/j.issn.1001-7283.2018.02.003

• 专题综述 • 上一篇    下一篇

油菜隐性细胞核雄性不育的研究进展

江莹芬,吴新杰,费维新,陈凤祥   

  1. 安徽省农业科学院作物研究所/国家油料改良中心合肥油菜分中心,230031,安徽合肥
  • 收稿日期:2017-10-31 修回日期:2017-12-15 出版日期:2018-04-20 发布日期:2018-08-27
  • 作者简介:江莹芬,副研究员,主要从事油菜相关基因定位、克隆以及油菜分子育种
  • 基金资助:
    安徽省农业科学院种子工程项目(16D0203)

Research Progress on Recessive Genic Male Sterility of Rapeseed

Jiang Yingfen,Wu Xinjie,Fei Weixin,Chen Fengxiang   

  1. Institute of Crop Science, Anhui Academy of Agricultural Sciences/National Oil Crops Improvement Center,Hefei Rapeseed Subcenter, Hefei 230031, Anhui, China
  • Received:2017-10-31 Revised:2017-12-15 Online:2018-04-20 Published:2018-08-27

摘要:

油菜细胞核雄性不育是油菜杂种优势利用的重要途径。近年来,油菜隐性细胞核雄性不育研究取得了一些进展并育成了一批核不育杂交种。为了促进核不育研究的深入及油菜杂种优势利用水平,对双隐性核不育和隐性上位互作核不育2种类型的核不育系统的遗传模式、相关基因定位以及其不育分子机理方面的研究进行综述,并对其研究成果在将来油菜杂交育种中的利用进行展望。

关键词: 油菜, 杂种优势利用, 细胞核雄性不育, 双隐性核不育, 隐性上位核不育

Abstract:

Recessive genic male sterility is an important way of heterosis utilization in Brassica napus. In recent years, significant progress has been made in research on genic male sterility, and a batch of genic sterility hybrid varieties has been developed using this system. To understand genic male sterility further and enhance the utilization of heterosis in Brassica napus, this paper summarized the progress of two types of genic male sterility on their genetic basis, gene mapping of related genes, and molecular mechanism of sterility. Meanwhile, prospective of this knowledge for heterosis utilization was discussed.

Key words: Brassica napus, Heterosis utilization, Genic male sterility, Double recessive genic sterility, Recessive epistatic genic sterile

[1] 傅廷栋 . 杂交油菜的育种与利用. 武汉: 湖北科学技术出版社, 2000.
[2] 傅廷栋, 涂金星 . 油菜杂种优势利用的现状与展望.//刘后利. 作物育种学论丛. 北京: 中国农业大学出版社, 2002.
[3] 潘涛, 曾凡亚, 吴书惠 , 等. 甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究. 中国油料, 1988(3):7-10.
[4] 侯国佐, 王华, 张瑞茂 . 甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料, 1990(2):9-13.
[5] 陈凤祥, 胡宝成, 李强生 , 等. 甘蓝型油菜细胞核不育材料9012A的发现与初步研究. 北京农业大学学报, 1993,19(s4):57-61.
[6] 陈凤祥, 胡宝成, 李成 , 等. 甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功. 中国农业科学(研究通讯), 1995,28(5):94-95.
[7] 陈凤祥, 胡宝成, 李成 , 等. 甘蓝型油菜细胞核雄性不育性的遗传研究I.隐性核不育系9012A的遗传. 作物学报, 1998,24(4):431-438.
[8] Mariani C, De Beuekeleer M, Truetner J , et al. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990,347:737-741.
[9] Mariani C, Gossele V, De Beuekeleer M , et al. A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature, 1992,357:384-387.
[10] 易斌 . 甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆. 武汉:华中农业大学, 2008.
doi: 10.7666/d.y1659606
[11] 顿小玲 . 甘蓝型油菜核不育系7365A恢复基因克隆和进化分析. 武汉:华中农业大学, 2013.
doi: 10.7666/d.Y2566300
[12] 卢东林 . 分子标记辅助选择转育油菜高油酸隐性核不育系. 武汉:华中农业大学, 2015.
[13] 涂金星, 傅廷栋, 郑用链 . 甘蓝型油菜核不育材料育性基因的RAPD标记. 华中农业大学学报, 1997,16(2):112-117.
[14] Yi B, Chen Y, Lei S , et al. Fine mapping of the recessive genie male-sterile gene (Bnms1) in Brassica napus L. Theoretical and Applied Genetics, 2006,113:643-650.
doi: 10.1007/s00122-006-0328-9 pmid: 16804725
[15] Lei S, Yao X, Yi B , et al. Towards map-based cloning:fine mapping of a recessive genie male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theoretical and Applied Genetics, 2007,115:643-651.
[16] 曾芳琴 . 油菜S45AB隐性核不育分子机理与应用研究. 武汉:华中农业大学, 2010.
doi: 10.7666/d.Y2004703
[17] 雷绍林 . 甘蓝型油菜隐性核不育恢复基因BnMS2的精细定位与候选基因鉴定. 武汉:华中农业大学, 2009.
doi: 10.7666/d.Y1805354
[18] Yi B, Zeng F, Lei S , et al. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant Journal, 2010,63:925-938.
[19] Chen Y, Lei S, Zhou Z , et al. Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A. Plant Cell Reports, 2009,28:1363-1372.
[20] Qu C M, Fu F Y, Liu M , et al. Comparative transcriptome analysis of recessive male sterility (RGMS) in sterile and fertile Brassica napus Lines. Plos One, 2015,10(12):e0144118.
[21] Ji J, Yang L, Fang Z , et al. Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposo. Theoretical and Applied Genetics, 2017,130(7):1441-1451.
[22] Dobritsa A A, Shrestha J, Morant M , et al. CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiology, 2009,151(2):574-589.
[23] Li H, Pinot F, Sauveplane V , et al. Cytochrome P450 family member CYP704B2 catalyzes the ω-Hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell, 2010,1:173-190.
[24] 侯国佐, 王华, 张瑞茂 . 甘蓝型油菜细胞核雄性不育材料117A的遗传研究. 中国油料, 1990(2):9-13.
[25] 董发明, 洪登峰, 刘平武 , 等. 甘蓝型油菜隐性细胞核雄性不育系9012AB遗传模式新释. 华中农业大学学报, 2010,29(3):262-267.
[26] 俎峰, 夏胜前, 顿小玲 , 等. 基于分子标记的油菜隐性核不育7-7365AB遗传模式探究. 中国农业科学, 2010,43(15):3067-3075.
[27] Xia S, Cheng L, Zu F , et al. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theoretical and Applied Genetics, 2012: 1-8.
[28] Huang Z, Chen Y, Yi B , et al. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theoretical and Applied Genetics, 2007,115(1):113-118.
doi: 10.1007/s00122-007-0547-8 pmid: 17479242
[29] He J, Ke L, Hong D , et al. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theoretical and Applied Genetics, 2008,117(1):11-8.
doi: 10.1007/s00122-008-0747-x
[30] 江莹芬, 陈凤祥, 李强生 , 等. 甘蓝型油菜隐性上位互作核不育基因(Ms1)精细定位. 分子植物育种, 2011,9(5):599-604.
[31] Dun X, Zhou Z, Xia S , et al. BnaC.Tic40,a plastid inner membrane translocon originating from Brassica oleracea,is essential for tapetal function and microspore development in Brassica napus. The Plant Journal, 2011,68(3):532-45.
[32] Li J, Hong D, He J , et al. Map-based cloning of a recessive genic male sterility locusin Brassica napus L. and development of its functional marker. Theoretical and Applied Genetics, 2012,125(2):223-234.
doi: 10.1007/s00122-012-1827-5
[33] Xie Y, Hong D, Xu Z , et al. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breeding, 2007,27(2):145-149.
[34] Xiao L, Yi B, Chen Y F , et al. Molecular markers linked to Bn;rf:a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica, 2008,164(2):377-384.
doi: 10.1007/s10681-008-9679-4
[35] Xu Z, Xie Y, Hong D , et al. Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.). Genome, 2009,52(9):755-760.
[36] 江莹芬, 陈凤祥, 胡宝成 , 等. 甘蓝型油菜隐性三系核不育上位基因Rf精细定位. 作物杂志, 2013(1):40-44.
[37] 程玲 . 甘蓝型油菜隐性细胞核不育恢复基因BnMs4的精细定位及候选区段确定. 武汉:华中农业大学, 2012.
[38] Deng Z, Li X, Wang Z , et al. Map based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRfb,a male sterility gene,in Brassica napus. Theoretical and Applied Genetics, 2016,129(1):53-64.
[39] Xia S, Wang Z, Zhang H , et al. Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. The Plant Cell, 2016,28(9):2060-2078.
[40] 龙欢, 姚家玲, 涂金星 . 3种甘蓝型油菜雄性不育系花药发育的细胞学研究. 华中农业大学学报, 2005,24(6):570-575.
doi: 10.3321/j.issn:1000-2421.2005.06.008
[41] Vizcay-Barrena G, Wilson Z A . Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. Journal of Experimental Botany, 2006,11:2709-2717.
doi: 10.1093/jxb/erl032 pmid: 16908508
[42] Wu H, Cheung A Y . Programmed cell death in plant reproduction. Plant Molecular Biology, 2000,3:267-281.
doi: 10.1023/A:1026536324081 pmid: 11199388
[43] Zhu Y, Dun X, Zhou Z , et al. A separation defect of tapetum cells and mierospore mother cells results in male sterility in Brassica napus:the role of abscisic acid in early anther development. Plant Molecular Biology, 2010,72:111-123.
[44] 万丽丽 . 油菜细胞核雄性不育的细胞学研究以及育性相关基因的克隆与功能分析. 武汉:华中农业大学, 2010.
doi: 10.7666/d.Y1805295
[45] Dun X, Shen W, Hu K , et al. Neofunctionalization of duplicated Tic40 genes caused a gain of function variation related to male fertility in Brassica oleracea Lineages. Plant Physiology, 2014,166:1403-1419.
[46] Wilson Z, Zhang D . From arabidopsis to rice:pathways in pollen development. Journal of Experimental Botany, 2009,5:1479-1492.
doi: 10.1093/jxb/erp095 pmid: 19321648
[1] 蔡东芳,张书芬,王建平,何俊平,曹金华,文雁成,赵磊,王东国,朱家成. 控释氮肥运筹对丰油10号光合性能及产量的影响[J]. 作物杂志, 2018, (2): 136–140
[2] 胡敏,鲁剑巍,王振,游秋香. 晚播油菜绿肥适宜播种量研究[J]. 作物杂志, 2016, (6): 120–123
[3] 尹明智,官春云. 油菜新型胞质雄性不育系1193A和保持系的同工酶分析[J]. 作物杂志, 2016, (4): 36–40
[4] 宫彦龙,徐海,夏原野,杜志敏,石笑蕊,徐正进. 幼穗分化期喷施表油菜素内酯(epi-BR)对水稻穗部性状的影响[J]. 作物杂志, 2016, (2): 133–138
[5] 白桂萍, 刘克钊, 谭永强, 等. 油菜高产群体各农艺性状对产量的影响[J]. 作物杂志, 2015, (6): 33–38
[6] 杨艳君, 张谨华, 冀瑞萍, 等. 不同密度、油菜素内酯和2,4-D丁酯对谷子光合特性及产量的影响[J]. 作物杂志, 2015, (6): 84–90
[7] 荣松柏, 胡宝成, 陈凤祥, 等. 油菜黑胫病对油菜产量及农艺性状的影响[J]. 作物杂志, 2015, (6): 159–161
[8] 陈红琳, 陈尚洪, 沈学善, 等. 不同收获方式对油菜子粒损失、含油量及种植效益的影响[J]. 作物杂志, 2015, (5): 74–79
[9] 鲜孟筑, 杨萍, 胡立勇, 等. 油菜种子萌发成苗期耐低温性评价[J]. 作物杂志, 2015, (5): 116–122
[10] 胡庆一, 肖刚, 张振乾, 等. 9个光合作用相关基因在高油酸油菜近等基因系不同生育期中的表达研究[J]. 作物杂志, 2015, (4): 11–15
[11] 杨阳, 蒯婕, 吴莲蓉, 等. 多效唑对油菜机械收获关键性状的调控研究进展[J]. 作物杂志, 2015, (4): 5–10
[12] 黎兰献, 程鹏飞, 赵伟伟, 等. 优质油菜中油112“油蔬两用”试验结果简报[J]. 作物杂志, 2015, (4): 166–168
[13] 李宏军, 杨鸿, 朱传霞, 等. 湖南省油菜品种农艺性状分析[J]. 作物杂志, 2015, (3): 41–44
[14] 钟妍婷, 原向阳, 刘哲, 等. 油菜素内酯处理对谷子农艺性状和生理特性的影响[J]. 作物杂志, 2015, (2): 124–128
[15] 余佳玲, 朱兆坤, 张振华, 等. 不同供氮条件下谷氨酸胺合成酶与谷氨酸合成酶对油菜氮素再利用的影响[J]. 作物杂志, 2014, (6): 81–85
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .