作物杂志,2020, 第4期: 16–20 doi: 10.16035/j.issn.1001-7283.2020.04.003

• 专题综述 • 上一篇    下一篇

小麦Fhb1基因定位、克隆及其在抗赤霉病育种中利用的研究进展

刘东军(), 宋维富, 杨雪峰, 赵丽娟, 宋庆杰, 张春利, 辛文利(), 肖志敏   

  1. 黑龙江省农业科学院作物资源研究所,150086,黑龙江哈尔滨
  • 收稿日期:2019-12-20 修回日期:2020-02-11 出版日期:2020-08-15 发布日期:2020-08-11
  • 通讯作者: 辛文利
  • 作者简介:刘东军,主要从事小麦遗传育种工作,E-mail: dongdong415@126.com
  • 基金资助:
    国家重点研发计划(2016YFD0100102);黑龙江省农业科学院重点基金(2019YYYF001);国家现代农业产业技术体系建设专项(CARS-3-1-8)

Progress of Wheat Fhb1 Gene Locating and Cloning and Its Utilization in the Resistance Breeding

Liu Dongjun(), Song Weifu, Yang Xuefeng, Zhao Lijuan, Song Qingjie, Zhang Chunli, Xin Wenli(), Xiao Zhimin   

  1. Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2019-12-20 Revised:2020-02-11 Online:2020-08-15 Published:2020-08-11
  • Contact: Xin Wenli

摘要:

赤霉病已成为小麦第一大病害,严重影响小麦的产量和品质。目前,抗性品种结合化学防治的方法成为当前防治赤霉病的最有效途径。小麦赤霉病抗性受多种基因控制,其中,Fhb1基因抗性效应最大,且抗性稳定,在小麦赤霉病抗性方面具有重要作用。本文综述了赤霉病主效抗性基因Fhb1的定位、分子标记和克隆技术的最新研究进展。利用选择性回交技术和矮败小麦平台将Fhb1基因导入当地小麦中可提升赤霉病抗性,进而结合化学防治方法为我国小麦安全生产提供保障。

关键词: 小麦, 赤霉病, Fhb1基因, 利用

Abstract:

Fusarium head blight (FHB) has become the major disease of wheat, which seriously threatens wheat production as well as consumers health in China. At present, resistant varieties combined with chemical control have become the most effective ways to combat FHB. FHB resistance is controlled by many genes. Fhb1 was identified effective and stable gene, and plays an important role in improving the FHB resistance. The location, molecular marker, cloning , the utility value and application mode of Fhb1 gene were reviewed in this paper. Introduction of Fhb1 gene by selective backcross improves FHB resistance, combined with chemical control to provide security for wheat production in China.

Key words: Wheat, Fusarium head blight, Fhb1 gene, Utilization

表1

小麦赤霉病分子标记

标记类型
Marker type
分子标记
Molecular marker
序列
Sequence
退火温度
Annealing temperature (℃)
文献
Reference
STS His-InDel ATGCGTGCGCTGTACTTG
CGTCACAGAGTCCAGTGAAA
55 朱展望等[35]
STS TaHRC ATTCCTACTAGCCGCCTGGT
ACTGGGGCAAGCAAACATTG
57 Su等[36]
KASP Fhb1 GAAGGTGACCAAGTTCATGCTTTGGGCTCACGTCGTGCAA
GAAGGTCGGAGTCAACGGATTTGTCTGTTTCGCTGGGATG
CTTCCAGTTTCTGCTGCCAT
55 Su等[36]

图1

TaHRC(His)基因图谱及分子结构[40]

[1] Yin Y, Liu X, Li B , et al. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology, 2009,99(5):487.
[2] Pieczul K, Horoszkiewiez J J, Perek A , et al. The risk of production of mycotoxins in cereal grains by the chemotypes of Fusarium spp. Fresenius Environmental Bulletin, 2015,24(8):2527-2533.
[3] Chen Y, Zhou M G . Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide. Phytopathology, 2009,99(4):441-446.
[4] Spolti P, Del Ponte E M, Dong Y H , et al. Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Disease, 2014,98(5):607-613.
[5] 陈然, 李俊凯, 李黎 , 等. 小麦赤霉病生物防治研究进展. 2014,43(12):1-5.
[6] 杨荣明, 吴燕, 朱凤 , 等. 2010年江苏省小麦赤霉病流行特点及防治对策探讨. 中国植保导刊, 2011,31(2):16-19.
[7] 武爱波, 赵纯森, 李和平 , 等. 2套小麦鉴别寄主对我国代表性禾谷镰刀菌的抗性反应. 植物病理学报, 2006,36(3):285-288.
[8] Jia H Y, Zhou J Y, Xue S L , et al. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. The Crop Journal, 2018,6(1):48-59.
[9] Gilbert J, Haber S . Overview of some recent research developments in fusarium head blight of wheat. Canadian Journal of Plant Pathology, 2013,35(2):149-174.
[10] Cainong J C, Bockus W W, Feng Y G , et al. Chromosome engineering,mapping,and transferring of resistance to Fusarium head blight disease from Elymusts ukushiensis into wheat. Theoretical and Applied Genetics, 2015,128(6):1019-1027.
[11] Cuthbert P A, Somers D J, Brulé-Babel A . Mapping of Fhb2 on chromosome 6BS:a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007,114(3):429-437.
[12] Cuthbert P A, Somers D J, Thomas J , et al. Fine mapping,a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006,112(8):1465-1472.
[13] Guo J, Zhang X L, Hou Y L , et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015,128(11):2301-2316.
[14] Liu S X, Zhang X L, Pumphrey M O , et al. Complex microcolinearity among wheat,rice,and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Functional and Integrative Genomics, 2006,6(2):83-88.
[15] Qi L L, Pumphrey M O, Friebe B , et al. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008,117(7):1155-1166.
[16] Xue S L, Xu F, Tang M Z , et al. Precise mapping Fhb5,a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011,123(6):1055-1063.
[17] 武爱波 . 禾谷镰刀菌(Fusarium graminearum)致病力鉴定、毒素检测及其分子生物学研究. 武汉:华中农业大学, 2005.
[18] 张昊 . 中国麦类赤霉病菌群体遗传多样性及生态适应性研究. 北京:中国农业科学院, 2011.
[19] 师雯, 韩铮, 武爱波 , 等. 温度和pH对不同镰刀菌生长及产毒的影响. 食品工业科技, 2015,36(18):117-122.
[20] 李韬, 李嫒嫒, 李磊 . 小麦赤霉病:从表型鉴定到抗性改良. 科技导报, 2016,34(22):75-80.
[21] 程顺和, 张勇, 别同德 , 等. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012,28(5):938-942.
[22] 全国小麦赤霉病研究协作组. 小麦品种资源抗赤霉病性鉴定研究. 作物品种资源, 1984(4):2-7.
[23] He X Y, Singh P K, Schlang N , et al. Chracterization of Chinese wheat germplasm for resistance to Fusarium head blight at CIMMYT,Mexico. Euphytica, 2014,195(3):383-395.
[24] 刘易科, 佟汉文, 朱展望 , 等. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016,36(1):51-57.
[25] Zhu Z W, Hao Y F, Mergoum M , et al. Breeding wheat for resistance to Fusarium head blight in the Global North:China,USA,and Canada. The Crop Journal, 2019,7(6):730-738.
[26] Waldron B L, Moreno-Sevilla B, Anderson J A , et al. RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Science, 1999,39(3):805-811.
[27] Anderson J A, Stack R W, Liu S , et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theoretical and Applied Genetics, 2001,102(8):1164-1168.
[28] Zhou W C, Kolb F L, Bai G H , et al. Validation of a major QTL for scrab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breeding, 2003,122(1):40-46.
[29] Zhang X, Zhou M P, Ren L J , et al. Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica, 2004,139(1):59-64.
[30] Cuthbert P A, Somers D J, Thomas J , et al. Fine mapping Fhb1,a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006,112(8):1465-1472.
[31] Liu S, Pumphrey M O, Gill B S , et al. Toward positional cloning of Fhb1,a major QTL for Fusarium head blight resistance in wheat. Cereal Research Communications, 2008,36(S6):195-201.
[32] 薛树林 . 小麦高密度PCR分子标记遗传图谱的构建及抗赤霉病QTL近等基因系的选育. 南京:南京农业大学, 2007.
[33] 姜鸽 . 小麦抗赤霉病主效基因Fhb1区间的重组体分析. 南京:南京农业大学, 2014.
[34] 董晶晶, 钱丹, 李磊 , 等. 小麦地方品种黄方柱中赤霉病主效抗性位点Fhb1的精细定位. 麦类作物学报, 2015,35(12):1639-1645.
[35] 朱展望, 徐登安, 程顺和 , 等. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018,44(4):473-482.
[36] Su Z Q, Jin S J, Zhang D D , et al. Development and validation of diagnostic markers for Fhb1 region,a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics, 2018,131(8):2371-2380.
[37] Rawat N, Pumphrey M O, Liu S , et al. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nature Genetics, 2016,48(12):1576-1580.
[38] He Y, Zhang X, Zhang Y , et al. Molecular characterization and expression of PFT,an FHB resistance gene at the Fhb1 QTL in wheat. Phytopathology, 2018,108(6):730-736.
[39] Su Z Q, Bernardo A, Tian B , et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 2019,51(7):1099-1105.
[40] Li G Q, Zhou J Y, Jia H Y , et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019,51(7):1106-1112.
[41] Li T, Zhang H J, Huang Y W , et al. Effects of the Fhb1 gene on Fusarium head blight resistance and agronomic traits of winter wheat. The Crop Journal, 2019,7(6):799-808.
[42] 张宏军, 宿振起, 柏贵华 , 等. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44(4):505-511.
[43] 许峰, 张从宇, 闫素辉 , 等. 小麦抗赤霉病3B-QTL和6B-QTL的遗传互作模式分析. 植物保护学报. 2017,44(2):196-202.
[44] 周淼平, 姚金保, 张平平 , 等. 黄淮麦区小麦抗赤霉病新种质的创制和筛选. 麦类作物学报, 2018,38(3):268-274.
[45] Bernardo A, Bai G, Yu J , et al. Registration of near-isogenic winter wheat germplasm contrasting in Fhb1 for Fusarium head blight resistance. Journal of Plant Registrations, 2014,8(1):106-108.
[46] Pumphrey M O, Bernardo R, Anderson J A . Validating the QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Science, 2007,47(1):200-206.
[47] Anderson J A . Marker-assisted selection for Fusarium head blight resistance in wheat. International Journal of Food Microbiology, 2007,119(1):51-53.
[1] 范园园, 吴海梅, 逄蕾, 路建龙, 夏博文, 杨旭海. 基于Meta分析评价秸秆覆盖对我国北方半干旱区不同生态区域小麦产量的影响[J]. 作物杂志, 2020, (4): 143–149
[2] 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206–210
[3] 杨子光, 郭利磊, 张珂, 孙军伟, 孟丽梅. 黄淮旱地冬小麦主要性状演变规律研究[J]. 作物杂志, 2020, (4): 30–36
[4] 王中秋, 应鹏飞, 陈梦涛, 贺琼颖, 胡鑫. 普通小麦-野生二粒小麦染色体臂置换系籽粒与品质性状分析[J]. 作物杂志, 2020, (4): 37–44
[5] 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究[J]. 作物杂志, 2020, (4): 45–52
[6] 陈卫国, 张政, 史雨刚, 曹亚萍, 王曙光, 李宏, 孙黛珍. 211份小麦种质资源抗旱性的评价[J]. 作物杂志, 2020, (4): 53–
[7] 单子龙, 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤. 河北省小麦品质相关基因的KASP标记检测[J]. 作物杂志, 2020, (4): 64–71
[8] 徐园园, 赵鹏, 洪权春, 朱晓琴, 裴冬丽. 小麦转录因子基因TaMYB70的分离和表达分析[J]. 作物杂志, 2020, (4): 84–90
[9] 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102–108
[10] 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响[J]. 作物杂志, 2020, (3): 142–148
[11] 柴芳梅, 高甜甜, 柴守玺, 程宏波, 宋亚丽, 鲁清林. 种植密度对甘肃不同生态区小麦产量形成的影响[J]. 作物杂志, 2020, (3): 154–160
[12] 刘勇, 刘易科, 朱展望, 田进东, 陈泠, 邹娟, 赵发文, 关健, 高春保, 佟汉文. 小麦有机生产现状与分析——以湖北省南漳县稻茬麦有机产品认证为例[J]. 作物杂志, 2020, (3): 16–21
[13] 朱英杰, 刘富启, 张燕, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才. 不同土壤条件下氮肥处理对小麦产量及品质的影响[J]. 作物杂志, 2020, (3): 184–190
[14] 李红琴, 刘宝龙, 张波, 张怀刚. 青海省审定小麦品种SSR遗传多样性分析及分子身份证的建立[J]. 作物杂志, 2020, (3): 60–65
[15] 段俊枝, 齐学礼, 冯丽丽, 张会芳, 孙岩, 燕照玲, 陈海燕, 齐红志, 樊文杰, 杨翠苹, 刘毓侠, 任银玲, 张甲源, 李莹, 卓文飞. 抗旱基因在小麦抗旱基因工程中的应用进展[J]. 作物杂志, 2020, (3): 7–15
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!