作物杂志,2021, 第5期: 613 doi: 10.16035/j.issn.1001-7283.2021.05.002
宋坤锋1(), 郝风声2, 姚欣1, 王静1, 刘卫群1()
Song Kunfeng1(), Hao Fengsheng2, Yao Xin1, Wang Jing1, Liu Weiqun1()
摘要:
烟草花叶病毒(tobacco mosaic virus,TMV)寄主范围广泛、传染性极强,严重影响作物的产量和品质。实验室前期在不同耐受 TMV侵染的烟草品种中筛选出1个表达显著差异的蛋白14-3-3-like C,在此基础上,对Nt14-3-3-like C基因进行了克隆、生物信息学分析和亚细胞定位;通过农杆菌介导遗传转化,获取转基因植株;通过qPCR对转基因植株中TMV侵染响应相关基因的表达进行分析。结果显示,14-3-3-like C蛋白序列长度为780bp,编码260个氨基酸,具有14-3-3蛋白的典型沟槽结构,但没有跨膜结构和信号肽;定位于细胞核和细胞膜;转基因材料的qPCR分析发现,在Nt14-3-3-like C基因抑制的植株中,病原防卫和光合途径相关的基因表达显著下降,表明Nt14-3-3-like C可能通过抑制病原防卫和光合途径相关基因表达参与TMV对烟草的侵染。
[1] | 黄筱玲. 植物病毒病化学防治剂的研究现状及应用前景. 湖北化工, 1996, 13(S1):21-23. |
[2] | 林祥永, 陈飞雄, 王金文, 等. 烟草花叶病的发生规律与防治策略. 安徽农业科学, 2003, 31(3):487. |
[3] | 陈启建, 刘国坤, 吴祖建, 等. 三叶鬼针草中黄酮甙对烟草花叶病毒的抑制作用. 福建农林大学学报(自然科学版), 2003, 32(2):181-184. |
[4] | 颜培强, 白先权, 万秀清, 等. 应用RNAi技术培育抗TMV病毒转基因烟草. 遗传, 2007, 29(8):1018-1022. |
[5] |
Stange C, Matus J T, Elorza A, et al. Identification and characterization of a novel tobacco mosaic virus resistance N gene homologue in Nicotiana tabacum plants. Functional Plant Biology, 2004, 31(2):149-158.
doi: 10.1071/FP03160 |
[6] |
Wang J, Wang X R, Qi Z, et al. iTRAQ protein profile analysis provides integrated insight into mechanisms of tolerance to TMV in tobacco (Nicotiana tobacum). Journal of Proteomics, 2016, 132(2):21-30.
doi: 10.1016/j.jprot.2015.11.009 |
[7] |
Bachmann M, Huber J L, Liao P C, et al. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. Federation of European Biochemical Societies Letters, 1996, 387(2/3):127.
doi: 10.1016/0014-5793(96)00478-4 |
[8] |
Soll T M. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. The Plant Cell, 2000, 12(1):53-64.
doi: 10.1105/tpc.12.1.53 |
[9] |
Denison F C, Paul A L, Zupanska A K, et al. 14-3-3 proteins in plant physiology. Seminars in Cell and Developmental Biology, 2011, 22(7):720-727.
doi: 10.1016/j.semcdb.2011.08.006 pmid: 21907297 |
[10] | Nina J, Christian T, Claudia O. Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects. Frontiers in Plant Science, 2011, 2(96):96. |
[11] | Albertus H, Boer, Paula J, et al. Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasm A, 2013, 250(2):425-440. |
[12] | Cotelle V, Leonhardt N. 14-3-3 proteins in guard cell signaling. Frontiers in Plant Science, 2016, 6:1210. |
[13] |
Liu Q, Zhang S, Liu B. 14-3-3 proteins:macro-regulators with great potential for improving abiotic stress tolerance in plants. Biochemical and Biophysical Research Communications, 2016, 477(1):9-13.
doi: 10.1016/j.bbrc.2016.05.120 |
[14] |
Taylor K W, Kim J G, Su X B, et al. Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector xopN from binding to TFT1 attenuate xanthomonas virulence. PLoS Pathogens, 2012, 8(6):e1002768.
doi: 10.1371/journal.ppat.1002768 |
[15] | Konagaya K I, Matsushita Y, Kasahara M, et al. Members of 14-3-3 protein isoforms interacting with the resistance gene product N and the elicitor of tobacco mosaic virus. Journal of General Plant Pathology, 2004, 70(4):221-231. |
[16] | Malgorzata J R, Katarzyna K. The role of plasma membrane H+-ATPase in salinity stress of plants. Progress in Botany, 2015, 76:77-92. |
[17] |
Viso F D, Casaretto J A, Quatrano R S. 14-3-3 proteins are components of the transcription complex of the ATEM1 promoter in Arabidopsis. Planta, 2007, 227(1):167-175.
doi: 10.1007/s00425-007-0604-1 |
[18] |
周颖, 李冰樱, 李学宝. 14-3-3蛋白对植物发育的调控作用. 植物学报, 2012, 47(1):55-64.
doi: 10.3724/SP.J.1259.2012.00055 |
[1] | 刘晓丽, 韩利涛, 魏楠, 申飞, 蔡一林. 玉米ZmGS5基因克隆、分子特性分析及对拟南芥的遗传转化[J]. 作物杂志, 2021, (1): 1625 |
[2] | 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 5361 |
[3] | 向鹏, 龙承波, 罗红丽. 水稻OsMED7基因的克隆及表达分析[J]. 作物杂志, 2013, (3): 2124 |
[4] | 孙方志, 王大庆, 刘慧民. 小黑杨APETALA1基因的克隆与花芽发育中的表达模式[J]. 作物杂志, 2012, (4): 3440 |
[5] | 史冬燕, 黄兴奇. 东乡野生稻STK抗病基因片段的克隆及序列分析[J]. 作物杂志, 2009, (2): 2629 |
[6] | 刘占领, 雷财林, 程治军, 等. 水稻稻瘟病抗性基因定位与克隆研究进展[J]. 作物杂志, 2007, (3): 1619 |
|