作物杂志,2021, 第1期: 16–25 doi: 10.16035/j.issn.1001-7283.2021.01.003

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米ZmGS5基因克隆、分子特性分析及对拟南芥的遗传转化

刘晓丽1,2(), 韩利涛1, 魏楠1, 申飞1, 蔡一林2()   

  1. 1河南农业职业学院食品工程学院,451450,河南郑州
    2西南大学玉米研究所,400715,重庆
  • 收稿日期:2020-07-30 修回日期:2021-01-12 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 蔡一林
  • 作者简介:刘晓丽,研究方向为分子生物学,E-mail: 314496088@qq.com
  • 基金资助:
    河南农业职业学院科研创新团队项目(HNACKT-2020-05);河南农业职业学院科研创新团队项目(HNACKT-2019-02)

Cloning, Molecular Characteristics Analysis and Genetic Transformation of Arabidopsis thaliana of ZmGS5 Gene in Maize

Liu Xiaoli1,2(), Han Litao1, Wei Nan1, Shen Fei1, Cai Yilin2()   

  1. 1Department of Food Engineering, Henan Vocational College of Agriculture, Zhengzhou 451450, Henan, China
    2Maize Research Institute, Southwest University, Chongqing 400715, China
  • Received:2020-07-30 Revised:2021-01-12 Online:2021-02-15 Published:2021-02-23
  • Contact: Cai Yilin

摘要:

高产是玉米育种的重要目标,籽粒大小是决定籽粒产量的重要因子。基于水稻中控制籽粒大小的OsGS5基因编码序列,利用同源克隆方法,获得了玉米ZmGS5基因,其cDNA全长为1 695bp,开放阅读框1 491bp,编码496个氨基酸,含有Peptidase-S10结构域、1个信号肽和1个丝氨酸羧肽酶(serine carboxypeptidases,SCP)类蛋白所特有的催化活性中心,这些都与SCP家族结构特点相符,也与OsGS5相关研究结果相同;磷酸化位点分析结果表明,ZmGS5含有丝氨酸、苏氨酸和酪氨酸等蛋白激酶识别位点。qRT-PCR分析显示ZmGS5在雄穗和叶片中的表达量较高,而在胚及胚乳中的表达量相对较低。除此之外,采用农杆菌介导法,建立了拟南芥的遗传转化体系,得到纯合转基因株系,T3代转基因拟南芥种子千粒重为0.0169g,较野生型千粒重(0.0139g)高。

关键词: ZmGS5, 基因克隆, 丝氨酸羧肽酶, 分子特性分析, 遗传转化

Abstract:

High yield is an important goal of the maize breeding, grain size is a major determinative factor of high yield. In this study, based on the method of homology cloning, the OsGS5 sequence was used as a template to obtain the ZmGS5 gene. The sequencing result revealed that the full length cDNA of ZmGS5 was 1695bp. The Open Reading Frame (ORF) encoding 496 amino acid was 1491bp. The ZmGS5 protein contained conservative structure domain Peptidase-S10, a signal peptide, an active site of the serine carboxypeptidases, which were all conformed to the structure of serine carboxypeptidase family and also conformed to the OsGS5 related research results. Phosphorylation locus analysis indicated that the protein contained recognition loci of Ser, Thr, Tyr kinases. The result of real-time quantitative PCR showed that ZmGS5 had a much higher expression level in tassel and leaves, and the lower expression level in embryo and endosperm. According to agrobacterium-mediated method, we established genetic transformation system in Arabidopsis and obtained homozygous transgenic lines. The 1000-seed weight of T3 Arabidopsis (0.0169g) was higher than that of wild type (0.0139g).

Key words: ZmGS5, Gene cloning, Serine carboxypeptidases, Molecular characteristics analysis, Genetic transformation

表1

所有PCR扩增引物

引物Primer 引物序列Primer sequence 引物Primer 引物序列Primer sequence
ZmGS5-F CATATGGCGACAATGGCAGGG ZmGS5-R TTGTCATCTGTGTGTGGGAAGC
ZmGS5-3′-GSP1 TGCTGTTGACAAGGCAGTCGTAGCCAA ZmGS5-3′-GSP2 CGTAGCCAACAGACAGGAACATTTCAG
ZmGS5-5′-GSP1 GATGATGTGTTGGTGTAGGAGAAGCCA ZmGS5-5′-GSP2 ATTGAGCCAGAGTAGGAGAGGCTTGTG
UPM CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT NUP CTAATACGACTCACTATAGGGC
ZmGS5-qF CACAAGCCTCTCCTACTCTGGCTCAAT ZmGS5-qR TTCGTGGCTCCTATACTGCGGAAACCT

图1

ZmGS5基因3′和5′端RACE扩增 1:3′端,2:5′端,M:标记2.2 ZmGS5蛋白的理化性质

图2

ZmGS5蛋白的氨基酸组成

图3

ZmGS5蛋白的亲/疏水性分析

图4

不同植物ZmGS5同源蛋白的二级结构

图5

ZmGS5蛋白的空间结构

表2

ZmGS5和OsGS5蛋白的信号肽、重复组件和结构域特征值

蛋白
Protein
名称
Name
起点
Starting point
终点
End point
E
E-value
OsGS5 信号肽 1 30 N/A
简单重复组件 2 14 N/A
简单重复组件 17 28 N/A
Peptidase-S10结构域 48 475 1.1e-136
ZmGS5 信号肽 1 37 N/A
简单重复组件 13 25 N/A
Peptidase-S10结构域 64 489 8.2e-141
简单重复组件 313 330 N/A

图6

ZmGS5蛋白信号肽的预测

表3

ZmGS5和OsGS5蛋白磷酸化位点比较

名称
Name
位点
Site
氨基酸识别位点
Amino acid recognition site

Value
名称
Name
位点
Site
氨基酸识别位点
Amino acid recognition site

Value
预测
Forecast
ZmGS5 73 SPPVSQFAG 0.939 OsGS5 57 SPAVSQFAG 0.622 丝氨酸Senine
99 EAQTSPAHK 0.654 83 EAQASPAPE 0.844
163 GVGFSYTNT 0.780 149 GVGFSYTNT 0.502
205 EFYISGESY 0.524 191 EFYISGESY 0.610
296 SAVFSQYQE 0.662 283 NIIFSQYNQ 0.602
344 IRMFSGYDP 0.997 328 IKMFSGYDP 0.995
ZmGS5 167 SYTNTSSDL 0.748 OsGS5 153 SYTNTSSDL 0.748 苏氨酸Threonine
463 MTMVTIRGA 0.815 449 MTMVTVRGA 0.769
ZmGS5 184 AEDAYSFLV 0.902 OsGS5 170 AEDAYSFLV 0.902 酪氨酸Tyrosine
203 SHEFYISGE 0.821 189 DNEFYISGE 0.925
209 SGESYAGHY 0.936 195 SGESYAGHY 0.936
222 AELVYDRNK 0.865 208 ADLVYERNK 0.842
248 LTDDYYDSK 0.906 235 LTDDYYDSK 0.906
249 TDDYYDSKG 0.980 236 TDDYYDSKG 0.980
269 SDEVYERIK 0.986 256 SDQVYERIK 0.952
350 YDPCYSSNA 0.970 334 YDPCYSSYA 0.917
357 NAEKYFNDA 0.948 341 YAEDYFNKH 0.955

图7

ZmGS5与其他植物GS5基因序列同源性分析

表4

ZmGS5基因cDNA序列和ZmGS5蛋白序列的等位基因的多态性

多态性位点
Polymorphic locus
43、44、45 68 132 151 241 421 673 690 757 808 879 1231 1304 1357 1394 1420 1456 1457
cDNA突变位点
cDNA mutation
插入或删除
Insert or delete
T→C C→T C→T C→T G→A C→T C→T A→C C→T G→T G→C C→T C→A A→G T→C C→T A→G
B73 T C C C G C C A T G G C C A T C A
Mo17 T C C C G C C A T T G C C A T C A
178 T C C C G C C A T G G C C A T C A
郑58 T C C C G T C C C G C T A G C T G
昌7-2 GTC C C T T A T C C C G C T A G C T G
黄C GTC C C T T A T T C C G G C C A T C A
I15016 GTC C T T T A T T C C G G C C A T C A
I15018 T C C C G C C A T G G C C A T C A
I15020 T C C C G T C C C G C T A G C T G
I15030 GTC C C T T A T T C C G G C C A T C A
I15031 GTC C C T T A T T C C G G C C A T C A
氨基酸突变位点
Amino acid mutation
插入或删除
Insert or delete
F→L A→V T→I S→I I→V T→A
B73 F A T S I T
Mo17 F A T I I T
178 F A T S I T
郑58 F A T S V A
昌7-2 S L A T S V A
黄C S L A I S I T
I15016 S L V I S I T
I15018 F A T S I T
I15020 F A T S V A
I15030 S L A I S I T
I15031 S L A I S I T

图8

蛋白质的多序列比对

图9

SCPL蛋白家族系统进化树

图10

ZmGS5基因在玉米不同组织中的qRT-PCR分析

图11

11个自交系的籽粒表型

表5

11个自交系籽粒表型分析

指标Index B73 Mo17 178 郑58 Zheng 58 昌7-2 Chang 7-2 黄C Huang C I15016 I15018 I15020 I15030 I15031
百粒重100-grain weight (g) 19.14 28.28 18.99 24.56 23.78 24.77 18.04 19.05 18.52 24.98 24.54
百粒体积100-grain volume (mL) 18.50 24.67 17.33 23.83 21.00 22.50 17.05 18.30 17.93 22.53 23.40
十粒长10-grain length (cm) 9.90 9.92 7.65 9.86 9.55 9.98 7.69 7.85 7.64 10.25 10.30
十粒宽10-grain width (cm) 7.03 8.51 7.61 7.85 7.38 7.71 7.45 7.49 7.57 7.50 7.58
十粒厚10-grain thickness (cm) 5.07 6.01 5.96 5.81 5.94 5.63 5.66 5.89 5.92 5.32 5.28

图12

T0代拟南芥叶片检测ZmGS5基因

图13

T1代和T2代转基因拟南芥的筛选

表6

野生型和T3代转基因拟南芥的千粒重

编号
No.
千粒重
1000-seed
weight (g)
编号
No.
千粒重
1000-seed
weight (g)
编号
No.
千粒重
1000-seed
weight (g)
WT-1 0.0139 WT-2 0.0132 WT-3 0.0140
WT-5 0.0139 WT-6 0.0143
T3-7-1 0.0172 T3-3-1 0.0189 T3-1-10 0.0175
T3-1-11 0.0181 T3-7-9 0.0170 T3-14-10 0.0184
T3-1-6 0.0187 T3-10-13 0.0167 T3-7-7 0.0150
T3-13-11 0.0151 T3-1-9 0.0192 T3-2-16 0.0147
T3-8-5 0.0176 T3-7-11 0.0152 T3-18-3 0.0150
T3-2-3 0.0164 T3-20-8 0.0182 T3-14-5 0.0192
T3-10-7 0.0168 T3-5-9 0.0159 T3-2-17 0.0182
T3-19-1 0.0156 T3-1-4 0.0168 T3-20-6 0.0151
T3-14-1 0.0181 T3-13-14 0.0177 T3-3-2 0.0157
T3-2-9 0.0168 T3-3-4 0.0187 T3-6-3 0.0162
T3-19-2 0.0155 T3-4-6 0.0183 T3-8-10 0.0150
T3-19-5 0.0180 T3-14-9 0.0153 T3-10-13 0.0170
T3-13-8 0.0183
[1] 李向拓, 毛建昌, 吴权明. 分子标记在玉米育种中的应用. 玉米科学, 2004,43(2):26-29.
[2] 贾波, 管飞翔, 谢庆春, 等. 玉米产量性状QTL定位分析. 西南农业学报, 2013,26(1):22-25.
[3] 黄荣荣, 周子键, 陈甲法, 等. 玉米缺陷性籽粒突变体的遗传分析及突变基因dek1-T7的定位. 分子植物育种, 2012,10(2):163-168.
[4] Li X, Chen G H, Zhang W Y, et al. Genome-wide transcriptional analysis of maize endosperm in response to ae wx double mutations. Journal of Genetics and Genomics, 2010,37(11):749-762.
doi: 10.1016/S1673-8527(09)60092-8 pmid: 21115169
[5] Yi G, Lauter A M, Scott M P, et al. The thick aleurone 1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernell. Plant Physiology, 2011,156:1826-1836.
doi: 10.1104/pp.111.177725 pmid: 21617032
[6] 宋同明, 陆效武. 对一个玉米双重标记新突变基因(os)的染色体定位和初步遗传研究. 遗传学报, 1993(5):432-438.
[7] Lid S E, Gruis D, Jung R, et al. The defective kernel 1 (dek1) gene require for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2002,8(99):5460-5465.
[8] Jahnke S, Scholten S. Epigenetic resetting of a gene imprinted in plant embryos. Current Biology, 2009,19:1677-1681.
doi: 10.1016/j.cub.2009.08.053 pmid: 19781944
[9] Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011,43(12):1266-1269.
doi: 10.1038/ng.977 pmid: 22019783
[10] Kellogg E A. Evolutionary history of the grasses. Plant Physiology, 2001,125(3):1198-1205.
pmid: 11244101
[11] 王建兵, 汤华, 黄益勤, 等. 玉米和水稻重要性状QTL的比较研究. 遗传学报, 2004,31(12):1401-1407.
[12] Raith M R, Kelty C A, Griffith J F, et al. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources. Water Research, 2013,47(18):6921-6928.
doi: 10.1016/j.watres.2013.03.061 pmid: 23871256
[13] 刘晓丽, 魏楠. 拟南芥的遗传转化. 河南农业, 2019(27):45-46.
[14] Xu C J, Liu Y, Li Y B, et al. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015,9(66):2611-2623.
[15] 胡甘雨, 司风铃, 车燕飞, 等. 葱蝇过氧化氢酶基因的克隆及生物信息学分析. 西南大学学报(自然科学版), 2014,36(2):32-40.
[16] Mahoney J A, Ntolosi B, DaSilva R P, et al. Cloning and characterization of CPVL,a novel serine carboxypeptidase,from human macrophages. Genomics, 2001,72:243-251.
doi: 10.1006/geno.2000.6484 pmid: 11401439
[17] Shirley A M, Chapple C. Biochemical characterization of sinapoyglucose choline sinapolytransferase,a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. Journal Biological Chemistry, 2003,278(22):19870-19877.
[18] Cercós M, Urbez C, Carbonell J. A serine carboxypeptidase gene (PsCP),expressed in early steps of reproductive and vegetative development in Pisum sativum,is induced by gibberellins. Plant Molecular Biology, 2003,51(2):165-174.
doi: 10.1023/a:1021142403856 pmid: 12602875
[19] 刘丽, 王静, 张志明, 等. 玉米丝氨酸羧肽酶基因(ZmSCP)的克隆及表达分析. 作物学报, 2013,39(1):164-171.
doi: 10.3724/SP.J.1006.2013.00164
[20] Liu H Z, Wang X E, Zhang H J, et al. A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene, 2008,420:57-65.
pmid: 18571878
[1] 李颜方,杜艳伟,张正,王高鸿,赵根有,赵晋锋,余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化[J]. 作物杂志, 2019, (3): 73–79
[2] 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 53–61
[3] 张微,王良群,刘勇,郝艳芳,杨伟,白鸿雁,武擘. 农杆菌介导高粱遗传转化的相关因素优化[J]. 作物杂志, 2018, (1): 56–61
[4] 杨浩,朱延明. 耐碱GsCHX19基因的克隆及对苜蓿的遗传转化[J]. 作物杂志, 2016, (3): 37–44
[5] 孙鑫, 杨在东, 虞光辉, 等. Pinam、Pinbm和Gsp-1m基因表达载体构建及遗传转化[J]. 作物杂志, 2015, (4): 55–60
[6] 温昕, 邵铁梅, 柴锡庆, 等. 基于组织培养的红花生物反应器研究进展[J]. 作物杂志, 2015, (1): 25–30
[7] 李兴欣, 孟义江, 罗婉娇, 等. 基于绿色荧光标记的甘草遗传转化体系的建立[J]. 作物杂志, 2014, (4): 52–58
[8] 王慧, 杨小艳, 翁建峰, 等. 抗玉米螟基因GrylA.301原核表达和玉米遗传转化[J]. 作物杂志, 2014, (2): 34–38
[9] 刘建伟, 陈晓峰, 刘广富, 郭宗端, 李新柱, 胡兆平, 张亮. 大豆CYP78A5基因组织特异性启动子的克隆及表达分析[J]. 作物杂志, 2014, (1): 54–58
[10] 向鹏, 龙承波, 罗红丽. 水稻OsMED7基因的克隆及表达分析[J]. 作物杂志, 2013, (3): 21–24
[11] 孙方志, 王大庆, 刘慧民. 小黑杨APETALA1基因的克隆与花芽发育中的表达模式[J]. 作物杂志, 2012, (4): 34–40
[12] 王伟, 王罡, 季静, 郑丽红, 关春峰. 大豆子叶节植株再生体系的优化及转EPSPS基因的研究[J]. 作物杂志, 2012, (3): 23–27
[13] 张玉, 蒋欣梅, 于锡宏. 农杆菌介导的ICE1基因转化番茄的研究[J]. 作物杂志, 2010, (5): 51–55
[14] 史冬燕, 黄兴奇. 东乡野生稻STK抗病基因片段的克隆及序列分析[J]. 作物杂志, 2009, (2): 26–29
[15] 卢翠华, 邸宏, 石瑛, 等. 马铃薯微型薯外植体遗传转化体系的优化[J]. 作物杂志, 2009, (1): 31–35
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[2] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[3] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[4] 柴莹,徐永清,付瑶,李秀钰,贺付蒙,韩英琦,冯哲,李凤兰. 马铃薯干腐病病原镰孢菌体内产细胞壁降解酶特性研究[J]. 作物杂志, 2018, (4): 154 –160 .
[5] 杨飞,马文礼,陈永伟,张战胜,王昊. 匀播、滴灌对春小麦幼穗分化进程及产量的影响[J]. 作物杂志, 2018, (4): 84 –88 .
[6] 刘亚军,胡启国,储凤丽,王文静,杨爱梅. 不同栽培方式和种植密度对“商薯9号”产量及结薯习性的影响[J]. 作物杂志, 2018, (4): 89 –94 .
[7] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107 –112 .
[8] 赵璐,杨治伟,部丽群,田玲,苏梅,田蕾,张银霞,杨淑琴,李培富. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价[J]. 作物杂志, 2018, (1): 25 –34 .
[9] 陆姗姗,吴承来,李岩,张春庆. 玉米自交系性状保持和纯化的分子依据[J]. 作物杂志, 2018, (1): 41 –48 .
[10] 李耀燕,:裴艳艳,:黄珊艳,:张英燕,:韦松基,:谢阳姣,:周琼. 瑶药肿瘤藤(星毛冠盖藤)的生药学研究[J]. 作物杂志, 2018, (1): 61 –65 .