作物杂志,2022, 第1期: 161–166 doi: 10.16035/j.issn.1001-7283.2022.01.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响

谢慧敏1(), 吴可1, 刘文奇2, 韦国良3, 陆献4, 李壮林5, 韦善清1, 梁和1, 江立庚1()   

  1. 1广西大学作物栽培学与耕作学重点实验室,530004,广西南宁
    2广西壮族自治区土壤肥料工作站,530007,广西南宁
    3广西壮族自治区象州县土壤肥料工作站,545800,广西象州
    4广西壮族自治区龙州县农业农村局,532400,广西龙州
    5广西壮族自治区岑溪市土壤肥料工作站,543200,广西岑溪
  • 收稿日期:2021-02-08 修回日期:2021-05-12 出版日期:2022-02-15 发布日期:2022-02-16
  • 通讯作者: 江立庚
  • 作者简介:谢慧敏,主要从事作物栽培理论与技术研究,E-mail: mm131516@163.com
  • 基金资助:
    国家重点研发计划“热带双季稻药肥高效利用及减施综合技术模式集成和示范”(2018YFD020030503)

Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components

Xie Huimin1(), Wu Ke1, Liu Wenqi2, Wei Guoliang3, Lu Xian4, Li Zhuanglin5, Wei Shanqing1, Liang He1, Jiang Ligeng1()   

  1. 1Key Laboratory of Crop Cultivation and Farming Systems, Guangxi University, Nanning 530004, Guangxi, China
    2Soil and Fertilizer Workstation of Guangxi Zhuang Autonomous Region, Nanning 530007, Guangxi, China
    3Xiangzhou Soil and Fertilizer Workstation of Guangxi Zhuang Autonomous Region, Xiangzhou 545800, Guangxi, China
    4Longzhou Agricultural and Rural Bureau of Guangxi Zhuang Autonomous Region, Longzhou 532400, Guangxi, China
    5Cenxi Soil and Fertilizer Workstation of Guangxi Zhuang Autonomous Region, Cenxi 543200, Guangxi, China
  • Received:2021-02-08 Revised:2021-05-12 Online:2022-02-15 Published:2022-02-16
  • Contact: Jiang Ligeng

摘要:

为明确在化肥施用量减少条件下,海藻肥与微生物菌剂部分替代对水稻产量及其构成因素的影响。于2019年在广西龙州、象州和岑溪进行水稻多点联合大田试验,设置常规施肥量(P1)、常规施肥量减10%+海藻肥与微生物菌剂部分替代(P2)、常规施肥量减20%+海藻肥与微生物菌剂部分替代(P3)和常规施肥量减30%+海藻肥与微生物菌剂部分替代(P4)4个处理,成熟期测定水稻干物质积累量、产量及其构成因素。结果表明,3个试验点的平均干物质积累量P2处理比P1处理提高6.06%,P3和P4处理分别比P1处理下降3.44%和3.75%;平均产量P2处理比P1处理提高0.45%,P3和P4处理与P1处理相比平均下降5.40%和4.08%。由此可知,海藻肥和微生物菌剂可以替代10%~30%的化肥,替代比例与土壤肥力水平有关,不同地点替代比例略有差异,象州适宜替代比例为10%,龙州和岑溪最优替代比例为30%。

关键词: 海藻肥, 微生物菌剂, 化肥减量, 干物质积累量, 水稻产量

Abstract:

To determine the effects of partial substitution of different new fertilizers for chemical fertilizer on rice yield and its components under the condition of chemical fertilizer reduction. In 2019, a multipoint field experiment was conducted in Longzhou, Xiangzhou, and Cenxi in Guangxi. Four treatments of conventional fertilization (P1), 10% reduction in conventional fertilization+partial substitution of seaweed fertilizers and microbial inoculant (P2), 20% reduction in conventional fertilization+partial substitution of seaweed fertilizers and microbial inoculant (P3), 30% reduction in conventional fertilization+partial substitution of seaweed fertilizers and microbial inoculant (P4) were set. Dry matter accumulation amount, yield, and its components of rice were measured at maturity stage. The results showed that the average dry matter accumulation amount of three experiment sites, P2 treatment was 6.06% higher than that of P1 treatment, and P3 and P4 treatments were 3.44% and 3.75% lower than that of P1 treatment, respectively. The average yield of three experiment sites, P2 treatment increased by 0.45% compared with P1 treatment, and the average yield of P3 and P4 treatments decreased by 5.40% and 4.08% compared with P1 treatment. It was found that seaweed fertilizer and microbial inoculant could replace 10%-30% chemical fertilizer, the proportion of substitution was related to the soil fertility, and the replacement ratio in different places was slightly different, the suitable replacement ratio of Xiangzhou was 10%, and that of Longzhou and Cenxi were 30%.

Key words: Seaweed fertilizer, Microbial inoculant, Chemical fertilizer reduction, Dry matter accumulation amount, Rice yield

表1

试验点土壤肥力状况

试验点
Experiment site
pH 有机质
Organic matter (g/kg)
全氮
Total N (g/kg)
碱解氮
Available N (mg/kg)
有效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
龙州Longzhou 7.03 3.75 2.96 241.50 3.69 113.0
象州Xiangzhou 5.26 2.58 1.64 181.13 17.40 107.5
岑溪Cenxi 5.68 2.61 1.92 182.00 12.81 190.0

表2

各处理的施肥量及3个试验点的水稻品种

试验点
Experiment site
P1 P2 P3 P4 新型肥料
New fertilizer
水稻品种
Rice variety
N P2O5 K2O N P2O5 K2O N P2O5 K2O N P2O5 K2O
龙州Longzhou 150 45 135 135 40.5 121.5 120 36 108 105 31.5 94.5 海藻肥+微生物菌剂 特优3813
象州Xiangzhou 150 45 135 135 40.5 121.5 120 36 108 105 31.5 94.5 海藻肥+微生物菌剂 百香139
岑溪Cenxi 150 45 135 135 40.5 121.5 120 36 108 105 31.5 94.5 海藻肥+微生物菌剂 深优9798

表3

海藻肥与微生物菌剂部分替代化肥减量下水稻成熟期干物质积累量

处理
Treatment
龙州
Longzhou
象州
Xiangzhou
岑溪
Cenxi
平均值
Mean
P1 8 158.93a 11 353.58a 18 703.62a 12 738.71a
P2 7 661.50a 11 208.39a 21 660.77a 13 510.22a
P3 9 452.40a 9 773.85a 17 673.64a 12 299.96a
P4 8 970.34a 10 299.84a 17 514.12a 12 261.43a
平均值Mean 8 560.79 10 658.91 18 888.03

表4

海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响

试验点
Experiment site
处理
Treatment
有效穗数
Effective panicle (×104/hm2)
穗粒数
Grains per panicle
结实率
Seed setting rate (%)
千粒重
1000-grain weight (g)
收获指数
Harvest index
产量
Yield (kg/hm2)
龙州Longzhou P1 201.20a 120.04a 85.43a 25.66a 0.64a 5990.13a
P2 202.63a 122.82a 87.26a 24.74b 0.67a 5885.12a
P3 230.09a 131.19a 80.89a 24.88ab 0.64a 5792.11a
P4 208.82a 121.39a 86.18a 24.52b 0.66a 5973.63a
象州Xiangzhou P1 347.00a 126.48a 69.87b 18.02a 0.51a 7892.78b
P2 349.22a 122.48a 82.48a 17.47a 0.55a 8457.14a
P3 322.24a 116.00a 80.62a 17.36a 0.54a 7501.69bc
P4 306.36a 125.87a 81.87a 17.65a 0.54a 7108.95c
岑溪Cenxi P1 321.44a 207.70b 79.11a 19.96a 0.55a 7739.31a
P2 313.51a 228.72a 83.55a 19.28a 0.53a 7376.27b
P3 300.41a 200.56b 78.24a 19.46a 0.52a 7161.75c
P4 294.06a 210.40b 82.27a 19.19a 0.56a 7656.80a

表5

海藻肥与微生物菌剂部分替代化肥下不同试验点间干物质积累量及产量的比较

试验点
Experiment site
干物质积累量
Dry matter accumulation
(kg/hm2)
有效穗数
Effective panicles
(×104/hm2)
穗粒数
Grains per
panicle
结实率
Seed setting
rate (%)
千粒重
1000-grain
weight (g)
收获指数
Harvest
index
产量
Yield
(kg/hm2)
龙州Longzhou 8 560.80c 210.69c 123.86b 84.94a 24.95a 0.65a 5910.25b
象州Xiangzhou 10 658.91b 331.21a 122.71b 78.71b 17.62c 0.53b 7740.14a
岑溪Cenxi 18 888.03a 307.36b 211.85a 80.79ab 19.47b 0.54b 7483.54a

表6

水稻产量与其构成因素的相关性分析

项目
Item
产量
Yield
干物质积累量
Dry matter accumulation
有效穗数
Effective panicles
穗粒数
Grains per panicle
结实率
Seed setting rate
千粒重
1000-grain weight
干物质积累量Dry matter accumulation 0.514
有效穗数Effective panicles 0.956** 0.509
穗粒数Grains per panicle 0.341 0.971** 0.316
结实率Seed setting rate -0.544 -0.228 -0.666* -0.101
千粒重1000-grain weight -0.914** -0.44 -0.955** -0.261 0.546
收获指数Harvest index -0.857** -0.563 -0.936** -0.391 0.766** 0.909**
[1] 国家统计局. 2020中国统计年鉴, [2021-02-01]. http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm .
[2] 石少龙. 中国大米安全风险分析. 中国稻米, 2020, 26(1):6-10.
[3] FAO. [2021-02-03]. https://www.fao.org/faostat/zh/#data/RFN .
[4] Huang M, Lei T, Cao F B, et al. Grain yield responses to nitrogen rate in two elite double-cropped inbred rice cultivars released 41 years apart. Field Crops Research, 2020, 259:107970.
doi: 10.1016/j.fcr.2020.107970
[5] Kashif A, Wang W Y, Ren G X, et al. Changes in soil enzymes,soil properties,and maize crop productivity under wheat straw mulching in Guanzhong,China. Soil and Tillage Research, 2018, 182:94-102.
doi: 10.1016/j.still.2018.05.007
[6] Ruirui C, Mehmet S, Sergey B, et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories. Global Change Biology, 2014, 20(7):2356-2367.
doi: 10.1111/gcb.12475 pmid: 24273056
[7] Alfaro M A, Jarvis S C, Gregory P J. Factors affecting potassium leaching in different soils. Soil Use and Management, 2010, 20(2):182-189.
doi: 10.1111/j.1475-2743.2004.tb00355.x
[8] 任科宇, 段英华, 徐明岗, 等. 施用有机肥对我国作物氮肥利用率影响的整合分析. 中国农业科学, 2019, 52(17):2983-2996.
[9] 马凡凡, 邢素林, 甘曼琴, 等. 有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响. 作物杂志, 2019(5):89-96.
[10] 陈保宇. 海藻精与微生物菌剂对水稻生长和产量的影响及应用前景分析. 南宁:广西大学, 2017.
[11] 何应对, 王丽霞, 井涛, 等. 减量施氮对蕉园土壤养分、农艺性状及产量的影响. 热带农业科学, 2016, 36(12):1-5.
[12] Yue X L, Zhang J G, Shi A D, et al. Manure substitution of mineral fertilizers increased functional stability through changing structure and physiology of microbial communities. European Journal of Soil Biology, 2016, 77:34-43.
doi: 10.1016/j.ejsobi.2016.10.002
[13] Izhar A, Ullah S, He L, et al. Combined application of biochar and nitrogen fertilizer improves rice yield,microbial activity,and N-metabolism in a pot experiment. Peer J, 2020, 8:10311.
[14] Iqbal A, He L, Ali I, et al. Manure combined with chemical fertilizer increases rice productivity by improving soil health,post-anthesis biomass yield,and nitrogen metabolism. PLoS ONE, 2020, 15(10):e0238934.
[15] Iqbal A, He L, Khan A, et al. Organic manure coupled with inorganic fertilizer:an approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency. Agronomy, 2019, 9(10):651.
doi: 10.3390/agronomy9100651
[16] 孙晓, 尹皓婵, 张占田, 等. 海藻提取物对水稻产量及养分利用的影响. 江苏农业科学, 2020, 48(16):100-103.
[17] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.
[18] 凌启鸿, 张洪程, 蔡建中, 等. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993(6):1-11.
[19] 敖和军, 王淑红, 邹应斌, 等. 超级杂交稻干物质生产特点与产量稳定性研究. 中国农业科学, 2008, 41(7):1927-1936.
[20] 沙之敏, 陈侠桦, 赵峥, 等. 施肥方式对水稻‘花优14’干物质积累、产量及肥料利用率的影响. 中国生态农业学报, 2018, 26(6):815-823.
[21] 胡雅杰, 朱大伟, 邢志鹏, 等. 改进施氮运筹对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2015, 21(1):12-22.
[22] 彭玉, 孙永健, 蒋明金, 等. 不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响. 作物学报, 2014, 40(5):859-870.
[23] 杨林生, 张宇亭, 杨柳青, 等. 不同氮钾水平对水稻干物质累积、转运及产量的影响. 中国土壤与肥料, 2019(4):89-95.
[24] 刘彦伶, 李渝, 白怡婧, 等. 长期不同施肥对水稻干物质和磷素积累与转运的影响. 植物营养与肥料学报, 2019, 25(7):1146-1156.
[25] 陈丽楠, 彭显龙, 刘元英, 等. 养分管理对寒地水稻干物质积累及运转的影响. 东北农业大学学报, 2010, 41(5):52-56.
[26] 李永华, 武雪萍, 何刚, 等. 我国麦田有机肥替代化学氮肥的产量及经济环境效应. 中国农业科学, 2020, 53(23):4879-4890.
[27] 尹彩侠, 孔丽丽, 李前, 等. 优化施肥条件下有机肥部分替代化肥对水稻产量、养分吸收及转运的影响. 东北农业科学, 2020, 45(6):59-63.
[28] 石鑫蕊, 任彬彬, 江琳琳, 等. 有机肥替代部分化肥对水稻光合速率、氮素利用率和产量的影响. 应用生态学报, 2020, 32(1):1-10.
[29] 王晓炜, 冉成, 张巳奇, 等. 苏打盐碱稻区不同栽培模式水稻产量构成及物质生产比较. 华南农业大学学报, 2019, 40(6):45-50.
[30] 张洪程, 吴桂成, 李德剑, 等. 杂交粳稻13.5t/hm2超高产群体动态特征及形成机制的探讨. 作物学报, 2010, 36(9):1547-1558.
[31] 孙志祥, 李敏, 韩上, 等. 有机肥部分替代化肥和秸秆还田对双季稻产量、养分吸收及土壤肥力的影响. 安徽农业大学学报, 2021, 47(6):1-5.
[32] 卜容燕, 李敏, 韩上, 等. 有机无机肥配施对双季稻轮作系统产量、温室气体排放和土壤养分的综合效应. 应用生态学报, 2020, 32(1):1-9.
[33] 温延臣, 张曰东, 袁亮, 等. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51(11):2136-2142.
[34] 尼启波罗维奇. 作物产量变异的生理基础. 北京: 科学出版社, 1960.
[35] 何强, 邢俊杰, 舒服, 等. 水稻收获指数研究概况与展望. 杂交水稻, 2012, 27(6):3-6.
[36] Yang W, Peng S B, Rebecca C L, et al. Grain yield and yield attributes of new plant type and hybrid rice. Crop Science, 2007, 47(4):1393-1400.
doi: 10.2135/cropsci2006.07.0457
[37] 杨惠杰, 李义珍, 杨仁崔, 等. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001(4):26-31.
[38] 孙建军, 张洪程, 尹海庆, 等. 不同生态区播期对机插水稻产量、生育期及温光利用的影响. 农业工程学报, 2015, 31(6):113-121.
[39] 童平, 杨世民, 马均, 等. 不同水稻品种在不同光照条件下的光合特性及干物质积累. 应用生态学报, 2008, 19(3):505-511.
[40] 全国土壤普查办公室. 中国土壤普查技术. 北京: 农业出版社, 1992.
[1] 熊廷浩, 资涛, 张嫒, 胡宇倩, 彭芝, 宋海星. 化肥减量条件下不同有机肥用量对油菜养分利用和产量的影响[J]. 作物杂志, 2021, (3): 133–139
[2] 罗玉琼, 严博, 吴可, 谢慧敏, 梁和, 江立庚. 免耕和稻草还田对稻田土壤肥力和水稻产量的影响[J]. 作物杂志, 2020, (5): 133–139
[3] 杨永青, 高芳芳, 马亚君, 陈鑫, 张杰. 山西省旱作农业区不同施肥处理对谷子产量、品质及经济效益的影响[J]. 作物杂志, 2020, (4): 195–201
[4] 任永峰,路战远,赵沛义,高宇,刘广华,栗艳芳. 不同种植方式对旱地马铃薯水分利用及的影响[J]. 作物杂志, 2019, (5): 120–124
[5] 马凡凡,邢素林,甘曼琴,刘佩诗,黄瑜,甘晓玉,马友华. 有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响[J]. 作物杂志, 2019, (5): 89–96
[6] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143–148
[7] 贾有余,任永峰,高宇,赵沛义,尹秀兰,李彬,蒙美丽. 内蒙古阴山北麓区不同土壤改良剂施用效果研究[J]. 作物杂志, 2017, (2): 130–134
[8] 常娜,张雪娇,马璐璐,石晶晶,贾薇,齐永志,尹宝重,甄文超. 微生物菌剂对小麦生长及土传病害预防效果的影响[J]. 作物杂志, 2017, (1): 155–160
[9] 张洋洋,鲁剑巍,王友珠,王振,李小坤,任涛,丛日环. 钾肥施用方式对直播和移栽水稻产量和钾肥利用效率的影响[J]. 作物杂志, 2016, (1): 110–114
[10] 史秀宏, 孙涛, 李嵩, 等. 硅酸盐微生物菌剂对水稻硅含量及产量的影响[J]. 作物杂志, 2015, (6): 121–125
[11] 付立东, 王宇, 隋鑫, 等. 氮素基蘖穗肥不同施入比例对超级稻生育及产量的影响[J]. 作物杂志, 2010, (5): 34–38
[12] 杨忠生, 赵丽岩, 吕志友. 浅谈寒地水稻生产的几个关键技术环节[J]. 作物杂志, 2005, (4): 54–55
[13] 段盛大, 吴海龙. 水稻覆膜栽培在双晚“鸡肋”田上的应用[J]. 作物杂志, 2000, (4): 23–24
[14] 周建传, 黄开忠, 赵加生, 等. 水稻恶苗病发生的原因与防治对策[J]. 作物杂志, 1999, (4): 20–21
[15] 王增远, 徐雨昌, 李震, 等. 稻田甲烷排放及其控制[J]. 作物杂志, 1998, (3): 10–11
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!