作物杂志,2022, 第1期: 20–30 doi: 10.16035/j.issn.1001-7283.2022.01.003

• 专题综述 • 上一篇    下一篇

水稻细胞质雄性不育及其育性恢复基因的研究进展

段琉颖1,2, 吴婷2(), 李霞2, 谢建坤1(), 胡标林2()   

  1. 1江西师范大学生命科学学院,330022,江西南昌
    2江西省农业科学院水稻研究所/水稻国家工程实验室(南昌),330200,江西南昌
  • 收稿日期:2021-05-07 修回日期:2021-08-17 出版日期:2022-02-15 发布日期:2022-02-16
  • 通讯作者: 谢建坤,胡标林
  • 作者简介:段琉颖,主要从事水稻分子生态学研究,E-mail: 1025008742@qq.com;|吴婷为共同第一作者,主要从事水稻遗传育种研究,E-mail: kuaileting1989@126.com
  • 基金资助:
    国家自然科学基金(31760378);国家自然科学基金(31960085);江西省自然科学基金面上项目(20202BABL205018)

Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice

Duan Liuying1,2, Wu Ting2(), Li Xia2, Xie Jiankun1(), Hu Biaolin2()   

  1. 1College of Life Sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
    2Rice Research Institute, Jiangxi Academy of Agricultural Sciences/Rice National Engineering Laboratory (Nanchang), Nanchang 330200, Jiangxi, China
  • Received:2021-05-07 Revised:2021-08-17 Online:2022-02-15 Published:2022-02-16
  • Contact: Xie Jiankun,Hu Biaolin

摘要:

细胞质雄性不育(cytoplasmic male sterility,CMS)及育性恢复(restorer of fertility,Rf)是作物杂种优势利用的有效途径之一,由线粒体不育基因和核恢复基因互作产生。本文综述了水稻CMS和Rf基因的来源及其分子遗传机理,并展望了水稻CMS和Rf系统在水稻育种方面的应用。

关键词: 水稻, 细胞质雄性不育, 育性恢复基因, 分子机理, 杂种优势

Abstract:

The system of cytoplasmic male sterility (CMS) and restorer of fertility (Rf) is one of the effective ways to utilize heterosis of crops, which are produced by the interaction of mitochondrial sterility gene and nuclear restorer gene. CMS genes, the sources of Rf genes, and molecular mechanisms of CMS and Rf in rice were reviewed in this paper, and the application of CMS/Rf system in hybrid rice breeding was prospected as well.

Key words: Rice, Cytoplasmic male sterility, Fertility restorer gene, Molecular mechanism, Heterosis

表1

水稻CMS-WA育性恢复QTL

胞质类型
Type of cytoplasm
QTL 染色体
Chromosome
区间
Interval
群体材料
Population
恢复基因来源
Source of Rf
参考文献
Reference
WA Rf3 1 RM443-RM315 IR58025A/IR42686R IR42686R [40]
WA qRf-1-1 1 RG140 Neda-A/IR36 IR36 [41]
WA qRf-1-2 1 RM7180 Neda-A/IR36 IR36 [41]
WA Rf3 1 RM1-RM3873 Neda-A/IR36 IR36 [42]
WA
Rf3
1
DRRM-RF3-5-DRRM-RF3-10
IR58025A/KMR3RIR68897A/
DR714-1-2R
KMR3R
DR714-1-2R
[43]
WA qRf1 1 RG532-RG472 珍汕97A/密阳46 密阳46 [44]
WA Rf3 1 RM1 Neda-A/IR36、Neda-A/IR60966 IR36\IR60966 [45]
WA Rf 1 RM1 珍汕97A/明恢63 明恢63 [46]
WA qUSS-1 1 RM151-RM8083 珍汕97A/9311 9311 [47]
WA qBSS-1 1 RM151-RM8083 珍汕97A/9311 9311 [47]
WA Rf3 1 RM10338-RM10376 珍汕97A/明恢63 明恢63 [48]
WA Rf3 1 RM283-RM490 IR58025A/IR34686R IR34686R [49]
WA Rf i-1 1 RG345-RG233 圭630/02428 圭630 [39]
WA Rf i-2 2 RZ404c-RG241b 圭630/02428 圭630 [39]
WA Rf i-3 3 RG69a-RG413 圭630/02428 圭630 [39]
WA Rf i-4 4 C22-RG449d 圭630/02428 圭630 [39]
WA Rf i-5 5 RG435-RG172a 圭630/02428 圭630 [39]
WA Rf i-6 6 RG119a-G30 圭630/02428 圭630 [39]
WA qBSS-6 6 RM589-RM584 珍汕97A/9311 9311 [49]
WA Rf4 7 RM6344 IR58025A/IR42686R IR42686R [40]
WA qRf7 7 RZ395-RZ989 珍汕97A/密阳46 密阳46 [44]
WA qUSS-8 8 RM506-RM152 珍汕97A/9311 9311 [47]
WA Rf i-7 10 ZG3-G333 圭630/02428 圭630 [39]
WA Rf6 10 RM258-RM591 IR58025A/IR42686R IR42686R [40]
WA Rf4 10 RM171-RM228 珍汕97A/IR24 IR24 [51]
WA
Rf4
10
DRCG-RF4-14-DRCG-RF4-8
IR58025A/KMR3R
IR68897A/DR714-1-2R
KMR3R
DR714-1-2R
[43]
WA Rf4 10 RM258 IR58025A/PRR-78 PRR-78 [52]
WA Rf5 10 RM311-RM171 Neda-A/IR62030 IR62030 [45]
WA Rf4 10 RM171 Neda-A/IR60966 IR60966 [45]
WA
Rf4
10
RM311-RM6100
IR58025A/KMR3R
IR62829A/IR10198R
KMR3RIR10198R
[53]
WA Rf4 10 RM6737-RM171 Neda A/Amol1 Amol1 [54]
WA Rf 10 RM258-RM304 珍汕97A/明恢63 明恢63 [46]
WA qRf10 10 RZ811-RG561 珍汕97A/密阳46 密阳46 [44]
WA Rf4 10 RM269-RM1108 IR58025A/IR34686R IR34686R [49]
WA Rf4 10 RM6737-RM6100 Pusa6A/PRR78 PRR78 [55]
WA qRf11 11 RG118-RG167 珍汕97 A/密阳46 密阳46 [44]
WA qUSS-11 11 MRG5615-RM202 珍汕97A/9311 9311 [47]
WA qBSS-11 11 MRG5615-RM202 珍汕97A/9311 9311 [47]
WA Rf i-8 12 G148a-S14 圭630/02428 圭630 [39]
WA Rf7(t) 12 RM7003 IR58025A/IR42686R IR42686R [40]

表2

水稻CMS-HL育性恢复QTL

胞质类型
Type of cytoplasm
QTL 染色体
Chromosome
区间
Interval
群体材料
Population
恢复基因来源
Source of Rf
参考文献
Reference
HL Rf5 1 RG374-RG394 II-32A/E15 E15 [62]
HL Rf6 8 RM3710-RM407-RM22242 粤泰A/9311 9311 [59]
HL Rf6 8 RM407-SNP32 粤泰A/9311 9311 [60]
HL Rf5 10 HL01-MRG4456 丛广41A/密阳23 密阳23 [58]
HL Rf5 10 RM1108-RM5373 粤泰A/9311 9311 [61]
HL Rf5 10 RM6469-RM25659 粤泰A/密阳23 密阳23 [57]
HL Rf6(t) 10 SBD01-SBD07 粤泰A/9311 9311 [61]
HL qRf-10-1 10 RM258-C16 Lemont/特青 Lemont [56]

表3

水稻CMS-BT育性恢复QTL

胞质类型
Type of cytoplasm
QTL 染色体
Chromosome
区间
Interval
群体材料
Population
恢复基因来源
Source of Rf
参考文献
Reference
BT Rf-1 10 OSRRf Taichung 65/Chinsurah BoroⅡ Chinsurah BoroⅡ [63]
BT Rf1 10 S12564 Tsp509I-C1361MwoI Chinsurah BoroⅡ/Koshihikari IR8 [65]
BT Rf1 10 M1239Mbol-M66267Xbal Chinsurah BoroⅡ/Koshihikari IR8 [66]
BT Rf1 10 68923-6-68923-9 Taichung 65/Chinsurah BoroⅡ Chinsurah BoroⅡ [64]

表4

水稻其他类型胞质不育育性恢复QTL

胞质类型
Type of cytoplasm
QTL 染色体
Chromosome
区间
Interval
群体材料
Population
恢复基因来源
Source of Rf
参考文献
Reference
DA qRf1 1 RM1, RG532-RM35 协青早A/密阳46 密阳46 [68]
DA qRf1.3 1 RM9-RM3475 协青早B//东乡野生稻/协青早B 东乡野生稻 [69]
DA qRf1.4 1 RM315-RG236 协青早B//东乡野生稻/协青早B 东乡野生稻 [69]
DA qRf5 5 RG119-RG474 协青早A/密阳46 密阳46 [68]
DA qRf9 9 RM1896-RM201 协青早B//协青早B/东乡野生稻 东乡野生稻 [69]
DA qRf10-1 10 RG257-RM311 协青早A/密阳46 密阳46 [68]
DA qRf10-2 10 RM258-RZ811 协青早A/密阳46 密阳46 [68]
DA qRf10 10 RZ811-RG561 协青早A/密阳46 密阳46 [67]
ID Rf(u) 1 RM283 中9A/R68 R68 [70]
ID qRf1.4 1 RM315-RG236 协青早B//东乡野生稻/协青早B 东乡野生稻 [69]
ID qRf3 3 RM282-RM16 协青早B//协青早B/东乡野生稻 东乡野生稻 [69]
ID qRf5.1 5 RM188-RM3870 协青早B//协青早B/东乡野生稻 东乡野生稻 [69]
ID qRf5.2 5 RM334-RG119 协青早B//协青早B/东乡野生稻 东乡野生稻 [69]
ID qRf7 7 RM481-Indel 7.1 协青早B//东乡野生稻/协青早B 东乡野生稻 [69]
ID Rf4 10 RM258-RM6100 中9A/R68 R68 [70]
ID qRf10.1 10 RM1375-RM5620 协青早B//东乡野生稻/协青早B 东乡野生稻 [69]
ID qRf10.1 10 RM5620-RM1125 协青早B//协青早B/东乡野生稻 东乡野生稻 [69]
ID qRf10.2 10 RM171-RM590 协青早B//东乡野生稻/协青早B 东乡野生稻 [69]
LD Rf2 2 RM12939-RM12955 Koshihikari/LD-Akihikari Akihikari [71]
Dian1 Rf-D1(t) 10 OSR33(RM171)-RM228 Liyu A/Nan 34 Nan 34 [72]
CW Rf17 4 RM3866-AT10.5-1 Taichung 65/中国野生稻W1 中国野生稻W1 [73]
FA Rf(fa) 10 MM1967-RM25663 金农1A/9311-9 9311-9 [74]
FA Rf(fa) 10 RM6100-MM2023 Acc8558/Jiazao1-6 Jiazao1-6 [74]
Dissi Rf 1 RM7466-RM1360 IR75596A/IR68077-82-22-2-3R IR68077-82-22-2-3R [49]
Dissi Rf 10 RM258-RM6100 IR75596A/IR68077-82-22-2-3R IR68077-82-22-2-3R [49]
Gambiaca Rf 1 RM272-RM576 IR75601A/IR68444R IR68444R [49]

表5

已克隆的水稻细胞质不育育性恢复基因

CMS类型
Type of CMS
染色体
Chromosome
不育基因
CMS gene
恢复基因
Rf gene
核质互作类型
Nuclear-cytoplasm interaction type
功能
Function
参考文献
Reference
CMS-WA 10 WA352 Rf4 孢子体型 降低WA352的表达 [8,74-75]
CMS-HL 10 orfH79 Rf5, Rf6 (PPR) 配子体型 降低atp6的表达 [57]
CMS-BT 10 B-orf79 Rf1a, Rf1b (PPR) 配子体型 降低atp6的表达 [9,66]
ORF11 Irf1 配子体型 [75]
CMS-LD 2 L-orf79 Rf2 (GRP) 配子体型 降低atp6的表达 [71]
CMS-CW
4
0rf307
Rf17
配子体型
RMS启动子区域的SNP变异
逆向信号传导调控其表达水平
[20,79]
[1] Chen L T, Liu Y G. Male sterility and fertility restoration in crops. Annual Review of Plant Biology, 2014, 65:579-606.
doi: 10.1146/arplant.2014.65.issue-1
[2] 胡忠孝, 田妍, 徐秋生. 中国杂交水稻推广历程及现状分析. 杂交水稻, 2016, 31(2):1-8.
[3] 李泽炳, 肖翊华, 朱英国, 等. 杂交水稻的研究与实践. 上海: 上海科学技术出版社, 1981.
[4] 袁隆平. 水稻的雄性不育性. 科学通报, 1996(4):185-188.
[5] Kim Y J, Zhang D B. Molecular control of male fertility for crop hybrid breeding. Trends in Plant Science, 2018, 23(1):53-65.
doi: 10.1016/j.tplants.2017.10.001
[6] Huang J Z, E Z G, Zhang H L, et al. Workable male sterility systems for hybrid rice:genetics,biochemistry,molecular biology,and utilization. Rice, 2014, 7(1):13.
doi: 10.1186/s12284-014-0013-6
[7] Xie H W, Peng X J, Qian M J, et al. The chimeric mitochondrial gene orf182 causes non-pollen-type abortion in Dongxiang cytoplasmic male-sterile rice. The Plant Journal, 2018, 95:715-726.
doi: 10.1111/tpj.2018.95.issue-4
[8] Luo D P, Xu H, Liu Z L, et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nature Genetics, 2013, 45(5):573-579.
doi: 10.1038/ng.2570
[9] Wang Z, Zou Y, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18(3):676-687.
doi: 10.1105/tpc.105.038240
[10] Peng X, Wang K, Hu C, et al. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biology, 2010, 10:125.
doi: 10.1186/1471-2229-10-125
[11] Fujii S, Kazama T, Yamada M, et al. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genomics, 2010, 11:209.
doi: 10.1186/1471-2164-11-209 pmid: 20346185
[12] Igarashi K, Kazama T, Motomura K, et al. Whole genomic sequencing of RT98 mitochondria derived from Oryza rufipogon and northern blot analysis to uncover a cytoplasmic male sterility-associated gene. Plant Cell Physiology, 2013, 54(2):237-243.
doi: 10.1093/pcp/pcs177
[13] Okazaki M, Kazama T, Murata H, et al. Whole mitochondrial genome sequencing and transcriptional analysis to uncover an RT102-type cytoplasmic male sterility-associated candidate gene derived from Oryza rufipogon. Plant Cell Physiology, 2013, 54(9):1560-1568.
doi: 10.1093/pcp/pct102
[14] Yi P, Wang L, Sun Q P, et al. Discovery of mitochondrial Chimeric gene associated with male sterility of HL-rice. Chinese Science Bulletin, 2002, 47(9):744-747.
doi: 10.1360/02tb9168
[15] Dewey R E, Siedow J N, Timothy D H, et al. A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to bipolaris maydis toxin. Science, 1988, 239(4837):293-295.
pmid: 3276005
[16] 谢勇尧, 汤金涛, 杨博文, 等. 水稻育性调控的分子遗传研究进展. 遗传, 2019, 41(8):703-715.
[17] Scott I, Logan D C. Mitochondrial morphology transition is an early indicator of subsequent cell death in Arabidopsis. New Phytologist, 2008, 177(1):90-101.
doi: 10.1111/j.1469-8137.2007.02255.x pmid: 17986180
[18] 刘石锋, 陈倩, 洪广成, 等. 水稻细胞质雄性不育及育性恢复研究进展. 植物生理学报, 2018, 54(1):1-9.
[19] Fujii S, Komatsu S, Toriyama K. Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant Molecular Biology, 2007, 63(3):405-417.
pmid: 17086445
[20] Fujii S, Toriyama K. Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(23):9513-9518.
[21] Shinjyo C. Distributions of male sterility inducing cytoplasm and fertility restoring genes in rice:I. Commercial lowland rice cultivated in Japan. The Japanese Journal of Genetics, 1972, 47(4):237-243.
doi: 10.1266/jjg.47.237
[22] Shinjyo C. Distribution of male sterility inducing cytoplasm and fertility restoring genes in rice:II. Varieties introduced from sixteen countries. Japanese Journal of Breeding, 1972, 22(6):329-333.
doi: 10.1270/jsbbs1951.22.329
[23] Lin S C, Yuan L P. Hybrid rice breeding in China//Innovative approaches to rice breeding. IRRI,Manila, Philippines, 1980:35-51.
[24] Li Z, Zhu Y. Rice male sterility cytoplasm and fertility restoration. Hybrid rice:proceedings of the International Symposium on Hybrid Rice. International Rice Research Institute, 1988:85-l02.
[25] Yu S B, Xu W J, Vijayakumar C H M, et al. Molecular diversity and multilocus organization of the parental lines used in the international rice molecular breeding program. Theoretical and Applied Genetics, 2003, 108(1):131-140.
pmid: 13679990
[26] 丁立, 齐永文, 张洪亮, 等. 中国三系杂交稻恢复系资源的遗传多样性. 作物学报, 2007, 33(10):1587-1594.
[27] 张涛, 杨蛟, 蒋开锋, 等. 利用产量功能基因标记分析三系杂交水稻亲本的遗传多样性. 中国农业科学, 2014, 47(1):11-23.
[28] 何小平, 刘永柱, 郭涛, 等. 水稻细胞质雄性不育恢复基因定位及相互关系研究进展. 中国农学通报, 2011, 27(15):1-5.
[29] 陆作楣, 徐保钦. 论杂种优势群理论对杂交稻育种的指导意义. 中国水稻科学, 2010, 24(1):1-4.
[30] 寇姝燕, 邹茜, 刘慰华, 等. 云南地方老品种水稻中恢复基因位点遗传差异分析. 中国农学通报, 2012, 28(21):27-32.
[31] 段世华, 李绍清, 李阳生, 等. 水稻CMS相关基因在稻属AA基因组中的分布及其单核苷酸多态性. 遗传, 2007, 29(4):455-461.
[32] Kubo T, Arakawa T, Honma Y, et al. What does the molecular genetics of different types of restorer-of-fertility genes imply. Plants, 2020, 9(3):361.
doi: 10.3390/plants9030361
[33] Melonek J, Stone J D, Small I, et al. Evolutionary plasticity of restorer-of-fertility-like proteins in rice. Scientific Reports, 2016, 6:35152.
doi: 10.1038/srep35152 pmid: 27775031
[34] Bharaj T S, Bains S S, Gagneja M R. Genetics of fertility restoring of wild abortive cytoplasmic male sterility in rice (Oryza sativa L.). Euphytica, 1991, 56(4):199-203.
doi: 10.1007/BF00042364
[35] Anandakumar C R, Subramanian S. Genetics of fertility restoration in hybrid rice. Theoretical and Applied Genetics, 1992, 83(8):994-996.
doi: 10.1007/BF00232962 pmid: 24202925
[36] Tada Y. Effects of Rf-1,Rf-3 and Rf-6(t) genes on fertility restoration in rice (Oryza sativa L.) with WA- and BT-type cytoplasmic male sterility. Breeding Science, 2007, 57(3):223-229.
doi: 10.1270/jsbbs.57.223
[37] 贺和初. 滇一型和BT型杂交稻育性遗传和不育机理研究. 云南农业大学学报, 1988, 3(1):54-68.
[38] Tan Y P, Li S Q, Wang L, et al. Genetic analysis of fertility-restorer genes in rice. Biologia Plantarum, 2008, 52(3):469-474.
doi: 10.1007/s10535-008-0092-6
[39] 李平, 周开达, 陈英, 等. 利用分子标记定位水稻野败型质核互作雄性不育恢复基因. 遗传学报, 1996, 23(5):357-362.
[40] Bazrkar L, Ali A J, Babaeian N A, et al. Tagging of four fertility restorer loci for wild abortive-cytoplasmic male sterility system in rice (Oryza sativa L.) using microsatellite markers. Euphytica, 2008, 164(3):669-677.
doi: 10.1007/s10681-008-9667-8
[41] Ahmadikhah A, Alavi M. A cold-inducible modifier QTL affecting fertility restoration of WA CMS in rice. International Journal of Genetics and Molecular Biology, 2009, 1(5):89-93.
[42] Alavi M, Ahmadikhah A, Kamkar B, et al. Mapping Rf3 locus in rice by SSR and CAPS markers. International Journal of Genetics and Molecular Biology, 2009, 1(7):121-126.
[43] Suresh P B, Srikanth B, Kishore V H, et al. Fine mapping of Rf3 and Rf4 fertility restorer loci of WA-CMS of rice (Oryza sativa L.) and validation of the developed marker system for identification of restorer lines. Euphytica, 2012, 187(3):421-435.
doi: 10.1007/s10681-012-0737-6
[44] 庄杰云, 樊叶杨, 吴建利, 等. 水稻CMS-WA育性恢复基因的定位. 遗传学报, 2001, 28(2):129-134.
[45] Ahmadikhah A, Karlovb G I, Nematzadeh Gh, et al. Inheritance of the fertility restoration and genotyping of rice lines at the restoring fertility (Rf) loci using molecular markers. International Journal of Plant Production, 2007, 1(1):13-21.
[46] 何光华, 王文明, 刘国庆, 等. 利用SSR标记定位明恢63的2对恢复基因. 遗传学报, 2002, 29(9):798-802.
[47] Li P B, Su G C, Feng F C, et al. Mapping of minor quantitative trait loci (QTLs) conferring fertility restoration of wild abortive cytoplasmic male sterility and QTLs conferring stigma exsertion in rice. Plant Breeding, 2014, 133(6):722-727.
doi: 10.1111/pbr.2014.133.issue-6
[48] 亓芳丽, 姜明松, 袁守江, 等. 水稻野败型细胞质雄性不育恢复基因Rf3的定位. 中国农学通报, 2008, 24(8):114-117.
[49] Sattari M, Kathiresan A, Gregorio G B, et al. Comparative genetic analysis and molecular mapping of fertility restoration genes for WA,Dissi,and Gambiaca cytoplasmic male sterility systems in rice. Euphytica, 2008, 160(3):305-315.
doi: 10.1007/s10681-007-9498-z
[50] Kumar A, Bhowmick P K, Singh V J, et al. Marker-assisted identification of restorer gene(s) in iso-cytoplasmic restorer lines of WA cytoplasm in rice and assessment of their fertility restoration potential across environments. Physiology and Molecular Biology Plants, 2017, 23(4):891-909.
doi: 10.1007/s12298-017-0464-5
[51] Jing R C, Li X M, Yi P, et al. Mapping fertility-restoring genes of rice WA cytoplasmic male sterility using SSLP markers. Botanical Bulletin of Academia Sinica, 2001, 42(3):167-171.
[52] Mishra G P, SinghR K, MohapatraT, et al. Molecular mapping of a gene for fertility restoration of wild abortive (WA) cytoplasmic male sterility using a basmati rice restorer line. Journal of Plant Biochemistry and Biotechnology, 2003, 12(1):37-42.
doi: 10.1007/BF03263157
[53] Sheeba N K, Viraktamath B C, Sivaramakrishnan S, et al. Vaildation of molecular markers linked to fertility restorer gene(s) for WA-CMS lines of rice. Euphytica, 2009, 167(2):217-227.
doi: 10.1007/s10681-008-9865-4
[54] Ahmadikhah A, Karlov G I. Molecular mapping of the fertility-restoration gene Rf4 for WA-cytoplasmic malesterility in rice. Plant Breeding, 2006, 125(4):363-367.
doi: 10.1111/pbr.2006.125.issue-4
[55] Ngangkham U, Parida S K, De S, et al. Genic markers for wild abortive (WA) cytoplasm based male sterility and its fertility restoration in rice. Molecular Breeding, 2010, 26(2):275-292.
doi: 10.1007/s11032-010-9397-1
[56] 刘航, 李丹, 李绍波. 水稻红莲型CMS育性恢复QTL分析. 武汉植物学研究, 2005, 23(2):111-115.
[57] Hu J, Wang K, Huang W C, et al. The rice pentatricopeptide repeat Protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex withthe glycine-rich protein GRP162. Plant Cell, 2012, 24(1):109-122.
doi: 10.1105/tpc.111.093211
[58] Huang J Y, Hu J, Xu X, et al. Fine mapping of the nuclear fertility restorer gene for HL cytoplasmic male sterility in rice. Botanical Bulletin of Academia Sinica, 2003, 44(4):285-289.
[59] Huang W C, Hu J, Yu C C, et al. Two non-allelic nuclear genes restore fertility in a gametophytic pattern and enhance abiotic stress tolerance in the hybrid rice plant. Theoretical and Applied Genetics, 2012, 124(5):799-807.
doi: 10.1007/s00122-011-1755-9
[60] Huang W C, Yu C C, Hu J, et al. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(48):14984-14989.
[61] Liu X Q, Xu X, Tan Y P, et al. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice. Molecular Genetics and Genomics, 2004, 271(5):586-594.
pmid: 15057557
[62] Shen Y W, Guan Z Q, Lu J, et al. Linkage analysis of a fertility restoring mutant generated from CMS rice. Theoretical and Applied Genetics, 1998, 97(1):261-266.
doi: 10.1007/s001220050894
[63] Akagi H, Yokozeki Y, Inagaki A, et al. A codominant DNA marker closely linked to the rice nuclear restorer gene,Rf-1,identified with inter-SSR fingerprinting. Genome, 1996, 39(6):1205-1209.
pmid: 8983188
[64] Akagi H, Nakamura A. Positional cloning of the rice Rf-1 gene,a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theoretical and Applied Genetics, 2004, 108(8):1449-1457.
pmid: 14968308
[65] Komori T, Yamamoto T. Fine genetic mapping of the nuclear gene Rf-1,that restores the BT-type cytoplasmic male sterility in rice (Oryza sativa L.) by PCR-based markers. Euphytica, 2003, 129(2):241-247.
doi: 10.1023/A:1021915611210
[66] Komori T, Ohta S, Mura N, et al. Map-based cloning of a fertility restorer gene,Rf-1,in rice (Oryza sativa L.). The Plant Journal, 2004, 37(3):315-325.
doi: 10.1046/j.1365-313X.2003.01961.x
[67] 谢建坤, 庄杰云, 樊叶杨, 等. 水稻矮败型细胞质雄性不育恢复基因的定位. 中国水稻科学, 2001, 15(3):161-164.
[68] 谢建坤, 庄杰云, 樊叶杨, 等. 水稻CMS-DA育性恢复基因定位及其互作分析. 遗传学报, 2002, 29(7):616-621.
[69] Hu B L, Xie J K, Wan Y, et al. Mapping QTLs for fertility restoration of different cytoplasmic male sterility types in rice using two Oryza sativa ×O. rufipogon backcross inbred line populations. BioMed Research International, 2016: 9236573.
[70] 李亮杰, 周海鹏. 水稻印尼水田谷型细胞质雄性不育恢复系R68的恢复基因初步定位. 中国水稻科学, 2007, 21(5):547-549.
[71] Itabashi E, Iwata N, Fujii S, et al. The fertility restorer gene,Rf2,for Lead-Rice type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. The Plant Journal, 2011, 65(3):359-367.
doi: 10.1111/j.1365-313X.2010.04427.x pmid: 21265890
[72] Tan X L, Tan Y L, Zhao Y H, et al. Identification of the Rf gene conferring fertility restoration of the CMS Dian-type 1 in rice by using simple sequence repeat markers and advanced inbred lines of restorer and maintainer. Plant Breeding, 2004, 123(4):338-341.
doi: 10.1111/pbr.2004.123.issue-4
[73] Fujii S, Toriyama K. Molecular mapping of the fertility restorer gene for ms-CW-type cytoplasmic male sterility of rice. Theoretical and Applied Genetics, 2005, 111(4):696-701.
pmid: 15947907
[74] Li Y, Zhang M, Yang X F, et al. Fine mapping of a fertility restoring gene for a new CMS hybrid rice system. Molecular Breeding, 2016, 36(10):141-145.
doi: 10.1007/s11032-016-0561-0
[75] Ohta H, Ogino A, Kasai M, et al. Fertility restoration by Ifr1 in rice with BT-type cytoplasmic male sterility is associated with a reduced level,but not processing,of atp6-orf79 cotranscribed RNA. Plant Cell Reports, 2010, 29(4):359-369.
doi: 10.1007/s00299-010-0827-7
[76] Tang H W, Luo D P, Zhou D G, et al. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Molecular Plant, 2014, 7(9):1497-1500.
doi: 10.1093/mp/ssu047
[77] Kazama T, Toriyama K. A fertility restorer gene,Rf4,widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein. Rice, 2014, 7(1):28.
doi: 10.1186/s12284-014-0028-z
[78] Li P, Zhou H, Yang H, et al. Genome-wide association studies reveal the genetic basis of fertility restoration of CMS-WA and CMS-HL in xian/indica and aus accessions of rice (Oryza sativa L.). Rice, 2020, 13(1):11.
doi: 10.1186/s12284-020-0372-0
[79] Suketomo C, Kazama T, Toriyama K. Fertility restoration of Chinese wild rice-type cytoplasmic male sterility by CRISPR/Cas9-mediated genome editing of nuclear-encoded retrograde-regulated male sterility. Plant Biotechnology, 2020, 37(3):285-292.
doi: 10.5511/plantbiotechnology.20.0326b
[80] Zhang H G, Che J L, Ge Y S, et al. Ability of Rf5 and Rf6 to restore fertility of Chinsurah Boro II-type cytoplasmic male sterile Oryza sativa (ssp. Japonica) lines. Rice, 2017, 10(1):2.
doi: 10.1186/s12284-017-0142-9
[81] Qin X J, Huang I, Xiao H J, et al. The rice DUF1620-containing and WD40-like repeat protein is required for the assembly of the restoration of fertility complex. New Phytologist, 2016, 210(3):934-945.
doi: 10.1111/nph.2016.210.issue-3
[82] 吴方喜, 蔡秋华, 朱永生, 等. 籼型杂交稻恢复系明恢63的利用与创新. 福建农业学报, 2011, 26(6):1101-1112.
[83] 房玉伟, 张伟, 陈佑源, 等. 2001-2017年我国优质杂交稻推广应用现状. 浙江农业学报, 2020, 32(1):1-14.
[84] 吕川根, 李霞, 陈国祥. 超级杂交稻两优培九高产的光合特性及其生理基础. 中国农业科学, 2017, 50(21):4055-4070.
[85] Chen L K, Yan X C, Dai J H, et al. Significant association of the novel Rf4-targeted SNP marker with restorer for WA-CMS in different rice backgrounds and its utilization in molecular screening. Journal of Integrative Agriculture, 2017, 16(10):2128-2135.
doi: 10.1016/S2095-3119(16)61620-9
[86] 王洪飞, 仇秀丽, 王乃元, 等. 质源(CMS-FA)杂交稻产量相关性状的相关性分析. 福建农业学报, 2012, 27(4):319-323.
[87] Toriyama K, Kazama T, Sato T, et al. Development of cytoplasmic male sterile lines and restorer lines of various elite indica group rice cultivars using CW-CMS/Rf17 system. Rice, 2019, 12(1):73-76.
doi: 10.1186/s12284-019-0332-8 pmid: 31535306
[88] Han Y, Luo D J, Usman B, et al. Development of high yield glutinous cytoplasmic male sterile rice (Oryza sativa L.) lines through CRISPR/Cas9 based mutagenesis of Wx and TGW6 and proteomic analysis of anther. Agronomy, 2018, 8(12):290-311.
doi: 10.3390/agronomy8120290
[1] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[2] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[3] 龙瑞平, 张朝钟, 戈芹英, 万卫东, 王勤, 李贵勇, 夏琼梅, 朱海平, 杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析[J]. 作物杂志, 2022, (1): 124–129
[4] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[5] 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161–166
[6] 李旭, 付立东, 王宇, 隋鑫, 任海, 吕小红, 马畅, 杜萌, 毛艇. DEP1NRT1.1B基因的遗传互作对水稻氮素利用的影响[J]. 作物杂志, 2021, (6): 22–27
[7] 张俊, 邓艾兴, 尚子吟, 唐志伟, 严圣吉, 张卫建. 秸秆还田下水稻丰产与甲烷减排的技术模式[J]. 作物杂志, 2021, (6): 230–235
[8] 余镁霞, 邓浩东, 谭景艾, 宋贵廷, 吴光亮, 陈利平, 刘睿琦, 邹安东, 贺浩华, 边建民. 利用染色体片段置换系定位低温影响水稻萌芽期根长和芽长QTL[J]. 作物杂志, 2021, (6): 36–45
[9] 苏代群, 陈亮, 李锋, 武琦, 白君杰, 邹德堂, 王敬国, 刘化龙, 郑洪亮. 利用高密度遗传图谱发掘水稻抽穗期新位点[J]. 作物杂志, 2021, (6): 58–61
[10] 石楠, 高志强, 胡海燕, 陈崇怡, 文双雅. 杂交稻有序机抛增密减肥处理对产量及肥料偏生产力的影响[J]. 作物杂志, 2021, (5): 128–133
[11] 唐志强, 张丽颖, 何娜, 马作斌, 赵明珠, 王昌华, 郑文静, 银永安, 王辉. 机械旱直播对水稻生育进程、光合特性及产量的影响[J]. 作物杂志, 2021, (5): 87–94
[12] 吴可, 谢慧敏, 刘文奇, 莫并茂, 韦国良, 陆献, 李壮林, 邓森霞, 韦善清, 梁和, 江立庚. 氮、磷、钾肥对南方双季稻区水稻产量及产量构成因子的影响[J]. 作物杂志, 2021, (4): 178–183
[13] 凌晨, 刘洪, 杨哲, 黄展权, 陈孟强, 饶得花, 徐振江. 双季稻栽培对水稻DUS测试标准品种数量性状表达的影响[J]. 作物杂志, 2021, (4): 18–25
[14] 张全芳, 姜明松, 陈峰, 朱文银, 周学标, 杨连群, 徐建第. 山东省水稻品种(系)的遗传多样性分析[J]. 作物杂志, 2021, (4): 26–31
[15] 王国骄, 宋鹏, 杨振中, 张文忠. 秸秆还田对水稻光合物质生产特征、稻米品质和土壤养分的影响[J]. 作物杂志, 2021, (4): 67–72
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!