作物杂志,2022, 第5期: 49–55 doi: 10.16035/j.issn.1001-7283.2022.05.007

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米叶宽的遗传效应分析

李丽华1(), 魏昕1(), 孟鑫2, 林海建2, 樊庆琦3, 鲁晓民1, 曹丽茹1, 张前进1, 张新1, 王振华1   

  1. 1河南省农业科学院粮食作物研究所,450002,河南郑州
    2四川农业大学玉米研究所,611130,四川成都
    3山东省农业科学院作物研究所,250100,山东济南
  • 收稿日期:2021-06-24 修回日期:2021-10-18 出版日期:2022-10-15 发布日期:2022-10-19
  • 通讯作者: 魏昕,主要从事玉米遗传育种研究,E-mail:weixin04@163.com
  • 作者简介:李丽华,主要从事玉米遗传育种研究,E-mail: llhtg1997@163.com
  • 基金资助:
    河南省基础前沿项目(162300410139);河南省农业科学院自主创新专项(2020ZC06);财政部和农业农村部:国家现代农业产业技术体系(CARS-02-05)

Analysis of the Genetic Effects of Leaf Width in Maize

Li Lihua1(), Wei Xin1(), Meng Xin2, Lin Haijian2, Fan Qingqi3, Lu Xiaomin1, Cao Liru1, Zhang Qianjin1, Zhang Xin1, Wang Zhenhua1   

  1. 1Institute of Food Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    3Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan 250100, Shandong, China
  • Received:2021-06-24 Revised:2021-10-18 Online:2022-10-15 Published:2022-10-19

摘要:

叶片是玉米植株进行光合作用最主要的器官,对玉米产量贡献巨大。利用1份玉米穗三叶窄叶和2份穗三叶宽叶自交系为材料,构建2套6世代分离群体(群体1和群体2),利用经典植物数量性状混合遗传模型主基因+多基因多世代联合分析方法,对玉米穗三叶叶片宽度的遗传效应进行分析。结果表明,2套群体穗三叶叶宽遗传均受不同的基因数量控制,属于不同的多基因遗传模型。在群体1中,穗上叶叶宽符合1对加性-显性主基因+加性-显性-上位性多基因模型(D-0),穗位叶叶宽符合2对基因加性-显性-上位性模型(B-1),穗下叶叶宽符合2对基因加性-显性模型(B-2)。在群体2中,穗上叶叶宽符合2对加性主基因+加性-显性多基因模型(E-3),穗位叶和穗下叶叶宽符合1对加性主基因+加性-显性多基因模型(D-2)。综上可知,玉米叶宽主要受主效基因控制,且在不同的遗传背景下,玉米穗三叶的遗传模式存在差异,穗位叶、穗上叶及穗下叶的遗传模式均受遗传背景的影响。

关键词: Maize, Three-ear-leaf, Leaf width, Genetic effects

Abstract:

Leaf is the most crucial component of plant photosynthesis, and it can significantly increase maize yield. In order to create two sets of six-generation segregating populations, one three-ear-leaf narrow-leaf inbred line and two three-ear-leaf wide-leaf inbred lines were crossed and backcrossed, respectively (population 1 and population 2). The genetic influence of the leaf width of the three-ear-leaf of maize on the cob was analysed using the main gene and multi-gene multi-generation combination analysis method of the mixed genetic model of plant quantitative traits. The results showed that the inheritance of the leaf width of the two groups of three-ear-leaf was controlled by different gene numbers and belonged to different polygenic genetic models. In population 1, the width of leaf above ear conformed to a pair of additive-dominant major gene+additive-dominant-epistatic polygene model (D-0), and the width of ear-leaf conformed to the two pairs of gene additive-dominant-epistatic model (B-1), the width of leaf under ear conformed to the two-pair gene additive-dominant model (B-2). In population 2, the width of leaf above ear conformed to the two pairs of additive major genes+ additive-dominant polygene model (E-3), and the widths of ear-leaf and under ear conformed to a pair of additive major genes+additive-dominant polygene model (D-2). Therefore, we speculate that maize leaf width was mainly controlled by the main effect genes, and the genetic pattern of the three-ear-leaf of maize was different under different genetic backgrounds. The genetic patterns of ear-leaf, leaf above ear and leaf under ear were all affected on major gene control.

Key words: 玉米, 穗三叶, 叶片宽度, 遗传效应

表1

R61×W75组合6个家系世代叶宽的次数分布

指标
Index
世代
Generation
叶宽Leaf width (cm) 平均数
Mean
变异系数
Coefficient of variation (%)
4~5 5~6 6~7 7~8 8~9 9~10 10~11 11~12 12~13
穗上叶宽
The width of leaf above ear
P1 1 1 3 5 1 9.64 10.02
P2 4 9 4 5.44 12.73
F1 1 2 8 5 10.44 7.28
B1 4 7 35 56 90 43 8 8.81 13.84
B2 3 9 8 6 15 8 1 8.20 19.48
F2 10 19 30 45 62 58 20 4 8.00 19.55
穗位叶宽
The width of ear leaf
P1 4 5 9.72 5.21
P2 11 6 5.76 8.12
F1 7 6 2 9.91 7.61
B1 8 21 58 76 56 13 2 9.11 12.50
B2 1 7 11 10 6 10 4 8.34 19.36
F2 9 19 32 44 45 60 28 4 8.07 20.46
穗下叶宽
The width of leaf under ear
P1 4 4 2 8.90 7.86
P2 5 11 1 6.08 8.55
F1 5 5 6 9.33 9.81
B1 4 15 57 82 62 21 2 9.29 12.00
B2 3 5 13 11 11 4 2 1 8.21 18.71
F2 4 11 35 45 58 56 28 10 1 8.33 18.91

表2

R61×W45组合6个家系世代叶宽的次数分布

指标
Index
世代
Generation
叶宽Leaf width (cm) 平均数
Mean
变异系数
Coefficient of variation (%)
4~5 5~6 6~7 7~8 8~9 9~10 10~11 11~12 12~13
穗上叶宽
The width of leaf above ear
P1 4 9 4 5.44 12.73
P2 2 6 0 1 7.37 10.29
F1 2 7 7 9.75 6.96
B1 20 39 40 31 11 1 7.14 15.89
B2 1 9 34 51 38 6 5 8.31 13.29
F2 5 31 40 41 35 14 2 1 7.95 16.88
穗位叶宽
The width of ear leaf
P1 11 6 5.76 8.12
P2 1 7 1 7.28 5.82
F1 2 6 6 2 9.79 10.01
B1 9 29 47 35 19 2 7.50 14.87
B2 3 27 39 54 12 1 8.59 11.77
F2 1 2 22 42 34 46 19 2 1 8.25 16.45
穗下叶宽
The width of leaf under ear
P1 5 11 1 6.08 8.55
P2 1 7 1 7.37 5.43
F1 2 7 6 3 9.78 9.65
B1 3 33 43 38 22 2 1 7.65 14.20
B2 2 17 56 49 18 2 1 8.77 10.49
F2 1 24 36 48 33 24 2 1 8.27 16.18

表3

R61×W75组合叶宽遗传模型的AIC值

穗上叶宽The width of leaf above ear 穗位叶宽The width of ear leaf 穗下叶宽The width of leaf under ear
模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC
A-1 -1017.72 2043.44 A-1 -967.41 1942.81 A-1 -984.92 1977.84
A-2 -1054.83 2115.66 A-2 -1001.32 2008.64 A-2 -1003.36 2012.72
A-3 -1019.18 2044.36 A-3 -967.48 1940.95 A-3 -985.22 1976.45
A-4 -1083.32 2172.65 A-4 -1044.64 2095.29 A-4 -1048.38 2102.77
B-1-1 -991.27 2002.55 B-1-1 -940.32 1900.64 B-1-1 -969.71 1959.42
B-1-2 -1012.66 2037.31 B-1-2 -954.87 1921.74 B-1-2 -970.23 1952.46
B-1-3 -1075.27 2158.53 B-1-3 -1043.92 2095.84 B-1-3 -1064.76 2137.52
B-1-4 -1053.29 2112.59 B-1-4 -1003.15 2012.31 B-1-4 -1005.87 2017.74
B-1-5 -1016.94 2041.88 B-1-5 -964.62 1937.23 B-1-5 -979.74 1967.49
B-1-6 -1019.29 2044.57 B-1-6 -965.93 1937.86 B-1-6 -980.03 1966.07
C-0 -999.25 2018.50 C-0 -952.14 1924.29 C-0 -972.65 1965.29
C-1 -1024.98 2063.95 C-1 -972.19 1958.37 C-1 1965.29 1967.72
D-0 -982.92 1989.84 D-0 -941.68 1907.36 D-0 -968.99 1961.99
D-1 -1013.05 2044.09 D-1 -953.45 1924.91 D-1 -968.47 1954.94
D-2 -1013.04 2042.09 D-2 -953.45 1922.91 D-2 -968.47 1952.94
D-3 -1016.16 2048.33 D-3 -958.00 1932.00 D-3 -973.32 1962.64
D-4 -1026.75 2069.50 D-4 -964.63 1945.25 D-4 -973.32 1962.65
E-1-0 -978.77 1993.53 E-1-0 -935.31 1906.61 E-1-0 -966.60 1969.19
E-1-1 -988.45 2006.90 E-1-1 -941.16 1912.32 E-1-1 -967.66 1965.32
E-1-2 -1008.85 2039.70 E-1-2 -957.97 1937.94 E-1-2 -971.00 1964.00
E-1-3 -993.10 2004.20 E-1-3 -943.87 1905.73 E-1-3 -969.48 1956.95
E-1-4 -1024.02 2064.03 E-1-4 -965.46 1946.92 E-1-4 -971.93 1959.86
E-1-5 -1008.90 2035.81 E-1-5 -955.43 1928.85 E-1-5 -973.52 1965.03

表4

R61×W45组合叶宽遗传模型的AIC值

穗上叶宽The width of leaf above ear 穗位叶宽The width of ear leaf 穗下叶宽The width of leaf under ear
模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC 模型
Model
极大似然数值
Max-likelihood-value
AIC
A-1 -806.90 1621.80 A-1 -777.37 1562.74 A-1 -769.81 1547.63
A-2 -828.29 1662.59 A-2 -801.26 1608.52 A-2 -797.96 1601.93
A-3 -853.43 1712.86 A-3 -824.59 1655.17 A-3 -822.87 1651.74
A-4 1712.86 1623.29 A-4 -785.23 1576.45 A-4 -780.64 1567.29
B-1-1 -782.34 1584.68 B-1-1 -751.97 1523.93 B-1-1 -748.41 1516.83
B-1-2 -784.65 1581.29 B-1-2 -754.06 1520.11 B-1-2 -748.83 1509.67
B-1-3 -850.41 1708.81 B-1-3 -821.15 1650.30 B-1-3 -821.48 1650.96
B-1-4 -825.62 1657.23 B-1-4 -799.57 1605.14 B-1-4 -796.31 1598.62
B-1-5 -851.39 1710.77 B-1-5 -823.08 1654.16 B-1-5 -821.33 1650.66
B-1-6 -851.39 1708.77 B-1-6 -823.08 1652.16 B-1-6 -821.33 1648.66
C-0 -771.25 1562.49 C-0 -744.56 1509.11 C-0 -740.25 1500.50
C-1 -776.50 1567.00 C-1 -747.56 1509.11 C-1 -743.71 1501.42
D-0 -771.24 1566.48 D-0 -743.19 1510.39 D-0 -740.25 1504.49
D-1 -772.61 1563.21 D-1 -744.28 1506.56 D-1 -734.48 1486.95
D-2 -772.61 1561.21 D-2 -744.28 1504.56 D-2 -734.48 1484.95
D-3 -776.07 1568.13 D-3 -746.34 1508.68 D-3 -742.21 1500.42
D-4 -776.30 1568.61 D-4 -746.33 1508.65 D-4 -742.22 1500.43
E-1-0 -766.21 1568.42 E-1-0 -740.75 1517.51 E-1-0 -733.47 1502.94
E-1-1 -768.67 1567.34 E-1-1 -742.80 1515.61 E-1-1 -733.63 1497.27
E-1-2 -773.48 1568.96 E-1-2 -743.41 1508.83 E-1-2 -739.57 1501.14
E-1-3 -771.29 1560.59 E-1-3 -744.60 1507.20 E-1-3 -739.23 1496.47
E-1-4 -776.40 1568.80 E-1-4 -747.51 1511.01 E-1-4 -743.68 1503.35
E-1-5 -776.37 1570.74 E-1-5 -747.51 1513.02 E-1-5 -743.68 1505.36

表5

组合R61×W75叶宽的遗传参数估计

性状
Trait
模型
Model
一阶参数
1st parameter
估计值
Estimate value
二阶参数
2nd parameter
估计值Estimated value
B1 B2 F2
穗上叶宽
The width of leaf above ear
D-0 m 7.79 σ2p 1.49 2.55 2.45
d 1.28 σ2e 0.58 0.58 0.58
h 1.48 σ2pg 0.89 0.04 0.46
σ2mg 0.02 1.93 1.40
h2pg (%) 59.66 1.70 18.83
h2mg (%) 1.07 75.44 57.31
穗位叶宽
The width of ear leaf
B-1 m 7.40 σ2p 1.30 2.61 2.73
da 1.86 σ2e 0.49 0.49 0.49
db 0.10 σ2pg
ha 0.51 σ2mg 0.81 2.12 2.24
hb 0.40 h2pg (%)
i 0.41 h2mg (%) 62.34 81.27 82.11
jab -0.91
jba -0.20
l 1.66
穗下叶宽
The width of leaf under ear
B-2 m 7.47 σ2p 1.24 2.36 2.48
da 1.43 σ2e 0.57 0.57 0.57
db 0.06 σ2pg
ha 0.55 σ2mg 0.67 1.79 1.91
hb 1.54 h2pg (%)
h2mg (%) 54.17 75.81 77.03

表6

组合R61×W45叶宽的遗传参数估计

性状
Trait
模型
Model
一阶参数
1st parameter
估计值
Estimate value
二阶参数
2nd parameter
估计值Estimated value
B1 B2 F2
穗上叶宽
The width of leaf above ear
E-3 m 7.80 σ2p 1.29 1.21 1.80
da -0.68 σ2e 0.47 0.47 0.47
db -0.97 σ2pg 0.25 0.35 0.59
ha -0.80 σ2mg 0.57 0.40 0.75
hb 0.08 h2pg (%) 19.51 28.69 32.55
i -0.03 h2mg (%) 44.16 32.83 41.48
jab 0.19
jba -0.02
l 0.66
穗位叶宽
The width of ear leaf
D-2 m 6.48 σ2p 1.24 1.02 1.84
d -1.15 σ2e 0.46 0.46 0.46
[d] 0.29 σ2pg 0.23 0.53 0.54
[h] 3.27 σ2mg 0.56 0.03 0.84
h2pg (%) 18.20 51.99 29.56
h2mg (%) 44.79 2.87 45.45
穗下叶宽
The width of leaf under ear
D-2 m 6.69 σ2p 1.18 0.85 1.79
d -1.37 σ2e 0.47 0.47 0.47
[d] 0.57 σ2pg 0.00 0.36 0.00
[h] 3.07 σ2mg 0.71 0.02 1.33
h2pg (%) 0.00 42.94 0.00
h2mg (%) 60.55 2.06 74.01
[1] Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L). Advances in Agronomy, 2005, 86(5):83-145.
[2] Li Y, Ma X L, Wang T Y, et al. Increasing maize productivity in China by panting hybrids with germplasm that responds favorably to higher planting density. Crop Science, 2011, 51(6):2391-2400.
doi: 10.2135/cropsci2011.03.0148
[3] Wang T Y, Ma X L, Li Y, et al. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Science, 2011, 51(2):512-525.
doi: 10.2135/cropsci2010.06.0383
[4] 唐登国. 玉米叶宽和叶长性状的QTL定位与分析. 成都:四川农业大学, 2013.
[5] 郭书磊, 鲁晓民, 齐建双, 等. 利用 RNA-Seq发掘玉米叶片形态建成相关的调控基因. 中国农业科学, 2020, 53(1):1-17.
[6] 王元东, 段民孝, 邢锦丰, 等. 玉米理想株型育种的研究进展与展望. 玉米科学, 2008, 16(3):47-50.
[7] 张莹莹, 杨青, 代资举, 等. 玉米穗三叶叶宽QTL定位及Meta分析. 河南农业科学, 2019, 48(12):15-22.
[8] 张旷野. 玉米叶夹角和叶宽的遗传分析及QTL定位. 沈阳:沈阳农业大学, 2017.
[9] 赖仲铭, 杨克诚, 雷本鸣, 等. 玉米几个自交系株型数量性状遗传的研究. 中国农业科学, 1981(4):28-36.
[10] 王克胜, 孔繁玲, 杜曼·依马买地. 玉米株型性状的遗传表达和自交系与杂交种的株型的聚类分析. 北京农业大学学报, 1992, 19(3):20-28.
[11] 陈宛秋, 张彪, 康继伟, 等. 几个常用玉米自交系株型性状的遗传及其在株型育种中的利用. 四川农业大学学报, 1993, 11(4):563-567.
[12] 李玉玲, 苏祯禄, 孙书库, 等. 玉米株型性状的配合力及其相关研究. 河南农业大学学报, 1994, 28(4):354-359.
[13] 王雅萍. 玉米自交系株型和产量性状的关系及其利用研究. 玉米科学, 2004, 12(3):47-49.
[14] 霍仕平, 晏庆九, 许明陆, 等. 玉米主要株型数量性状的基因效应分析. 玉米科学, 2001, 9(1):12-15.
[15] 温海霞, 蔡一林, 王久光, 等. 9个玉米自交系主要株型性状的配合力分析. 西南农业大学学报, 2002, 24(3):223-225.
[16] 陈岭, 崔绍平, 徐有, 等. 玉米株型性状的遗传分析. 华北农学报, 1994(增1):11-15.
[17] 盖钧镒, 章元明, 王健康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[18] 章元明, 盖钧镒. 数量性状分离分析中分布参数估计的IECM算法. 作物学报, 2000, 26(6):699-706.
[19] 赵可夫. 玉米抽雄后不同叶位叶对籽粒产量的影响及其光合性能. 作物学报, 1981, 7(4):259-266.
[20] 许海涛, 许波, 王友华, 等. 棒三叶对夏玉米光合生理特性、籽粒发育和产量性状的影响. 陕西农业科学, 2018, 64(7):8-12.
[21] 赵小强, 姬祥卓, 彭云玲. 花期玉米(Zea mays)穗三叶叶形结构的遗传效应及配合力分析. 分子植物育种, 2020, 18(9):3024-3031.
[22] Wang B B, Zhu Y B, Zhu J J, et al. Identification and fine- mapping of a major maize leaf width QTL in a resequenced large recombinant inbred lines population. Frontiers in Plant Science, 2018, 9:1-11.
doi: 10.3389/fpls.2018.00001
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李红燕,王永宏,赵如浪,张文杰,明博,谢瑞芝,王克如,李璐璐,高尚,李少昆. 宁夏引/扬黄灌区玉米子粒脱水模型的构建与应用[J]. 作物杂志, 2018, (4): 149 –153 .
[2] 温辉芹,程天灵,裴自友,李雪,张立生,朱玫. 山西省近年审定小麦品种的综合性状分析[J]. 作物杂志, 2018, (4): 32 –36 .
[3] 梁海燕, 李海, 林凤仙, 张翔宇, 张知, 宋晓强. 不同糜子品种抗倒伏性田间鉴定及抗倒评价指标的筛选分析[J]. 作物杂志, 2018, (4): 37 –41 .
[4] 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 8 –12 .
[5] 樊艳丽,董会,卢柏山,史亚兴,高宁,史亚民,徐丽,席胜利,张翠芬,刘焱辉. 播期对不同糯玉米品种淀粉糊化特性的影响[J]. 作物杂志, 2018, (4): 79 –83 .
[6] 张燕,尹翠,曹云娥. 蚯蚓发酵液对果蔬品质的影响[J]. 作物杂志, 2018, (1): 102 –106 .
[7] 黄少辉,杨云马,刘克桐,杨军芳,邢素丽,孙彦铭,贾良良. 不同施肥方式对河北省小麦产量及肥料贡献率的影响[J]. 作物杂志, 2018, (1): 113 –117 .
[8] 杜志敏,杨宇尘,夏原野,宫彦龙,闫志强,徐海. 收获期对北方杂交粳稻和常规粳稻品质的影响[J]. 作物杂志, 2018, (1): 147 –151 .
[9] 郜战宁,冯辉,薛正刚,杨永乾,王树杰,潘正茂. 28个大麦品种(系)主要农艺性状分析[J]. 作物杂志, 2018, (1): 77 –82 .
[10] 朱凯,张飞,柯福来,王艳秋,邹剑秋. 种植密度对适宜机械化栽培高粱品种产量及生理特性的影响[J]. 作物杂志, 2018, (1): 83 –87 .