作物杂志,2022, 第5期: 62–68 doi: 10.16035/j.issn.1001-7283.2022.05.009

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

不同籽粒颜色玉米自交系类胡萝卜素含量分析

朱航1,2(), 崔方庆2,3, 卢传礼2, 陈卫卫2, 李旭辉2, 陆思奇2,3, 张湘博2, 赵华4(), 齐永文2,3()   

  1. 1长江大学农学院,434025,湖北荆州
    2广东省科学院南繁种业研究所,510316,广东广州
    3仲恺农业工程学院农业与生物学院,510100,广东广州
    4广州国家现代农业产业科技创新中心,510520,广东广州
  • 收稿日期:2022-04-16 修回日期:2022-06-15 出版日期:2022-10-15 发布日期:2022-10-19
  • 通讯作者: 齐永文,研究方向为作物分子育种,E-mail:yongwen2001@126.com; 赵华为共同通信作者,研究方向为农业育种研究及科技推广,E-mail:281277430@qq.com
  • 作者简介:朱航,研究方向为作物分子育种,E-mail: 18209219830@163.com
  • 基金资助:
    国家甘蔗产业技术体系(CARS201707);广东省重点领域研发计划(2019B020238001);国家自然科学基金(32072027)

Analysis of Carotenoid Content in Maize Inbred Lines with Different Color Grains

Zhu Hang1,2(), Cui Fangqing2,3, Lu Chuanli2, Chen Weiwei2, Li Xuhui2, Lu Siqi2,3, Zhang Xiangbo2, Zhao Hua4(), Qi Yongwen2,3()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
    3College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510100, Guangdong, China
    4Guangzhou National Modern Agricultural Industry Science and Technology Innovation Center, Guangzhou 510520, Guangdong, China
  • Received:2022-04-16 Revised:2022-06-15 Online:2022-10-15 Published:2022-10-19

摘要:

采用高效液相色谱检测60个不同玉米籽粒颜色自交系中类胡萝卜素(叶黄素、玉米黄质、β-隐黄质和β-胡萝卜素)含量,结果显示,叶黄素、玉米黄质、β-隐黄质和β-胡萝卜素的平均含量分别为56.32、0.85、1.31和5.75mg/kg。按籽粒颜色由浅到深,将60个玉米自交系分为4个等级,颜色越深的品种类胡萝卜素含量越高。对R、G、B、Gray值与类胡萝卜素含量进行相关分析表明,R、G、B和Gray值之间存在极显著正相关(P<0.01),相关系数分别为0.992(G与Gray)和0.939(R与Gray),4种类胡萝卜素含量间呈极显著正相关,相关系数分别为0.830(β-隐黄质与β-胡萝卜素)和0.815(β-隐黄质与玉米黄质)。根据类胡萝卜素含量对60个玉米自交系进行聚类分析,60个自交系分为5类,其中第1类类胡萝卜素含量最低,第2类属于中富含类胡萝卜素的自交系,第5类属于高维生素A含量的自交系。综上可知,类胡萝卜素的种类及其含量是影响籽粒颜色的重要因素,可为培育高胡萝卜素含量的玉米品种提供依据。

关键词: 玉米, 类胡萝卜素, 高效液相色谱法

Abstract:

The contents of four carotenoids including lutein, zeaxanthin, β-cryptoxanthin and β-carotene in grains of 60 maize inbred lines were detected by high performance liquid chromatography. The results showed that the average contents of lutein, zeaxanthin, β-cryptoxanthin and β-carotene were 56.32, 0.85, 1.31 and 5.75mg/kg, respectively. The 60 maize inbred lines could be classified into four grades according to the grain color from light to dark. The darker the grain color, the higher the carotene content. The correlation analysis of carotenoid contents in 60 maize inbred lines showed that there were extremely significant positive correlations between R, G, B and Gray values (P < 0.01), and the correlation coefficients were 0.992 (between G and Gray) and 0.939 (between R and Gray), respectively. There were extremely significant positive correlations among the contents of four carotenoids, and the correlation coefficients were 0.830 (between β-cryptoxanthin and β-carotene), 0.815 (between β-cryptoxanthin and zeaxanthin) respectively. Cluster analysis was performed according to carotenoid content and the 60 maize inbred lines were divided into five categories. Among them, the first category had the lowest carotenoid content, the second category riched in carotenoids, and the fifth category riched in vitamin A. It was concluded that the types and contents of carotenoids were important factors affecting the color of maize grains, and the conclusion provided a basis for selecting maize with high nutritional value and rich in cryptoxanthin.

Key words: Maize, Carotenoid, High performance liquid chromatography

表1

60份供试材料

编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
C1 CAU404 C13 CAU204 C25 CAU532 C37 IL18 C49 CAU206
C2 CAU322 C14 CAU366 C26 B73 C38 CAU319 C50 CAU393
C3 CAU440 C15 CAU55 C27 CAU489 C39 CAU75 C51 CAU149
C4 IL23 C16 CAU281 C28 CAU482 C40 CAU146 C52 CAU129
C5 CAU252 C17 CAU219 C29 IL5 C41 CAU164 C53 CAU479
C6 CAU268 C18 CAU140 C30 CAU167 C42 CAU274 C54 CAU261
C7 IL52 C19 CAU597 C31 CAU208 C43 CAU269 C55 IL51
C8 CAU501 C20 CAU338 C32 CAU14 C44 CAU565 C56 IL27
C9 CAU263 C21 CAU513 C33 CAU342 C45 IL86 C57 IL65
C10 CAU159 C22 CAU640 C34 CAU93 C46 CAU502 C58 CAU18
C11 CAU297 C23 CAU525 C35 CAU365 C47 CAU539 C59 CAU160
C12 CAU144 C24 CAU504 C36 CAU416 C48 CAU154 C60 CAU225

图1

玉米籽粒颜色分级

表2

混合标准液浓度

标准样品
Standard sample
水平1
Level 1
水平2
Level 2
水平3
Level 3
水平4
Level 4
水平5
Level 5
水平6
Level 6
叶黄素Lutein 200.00 100.00 50.00 25.00 12.50 6.25
玉米黄质Zeaxanthin 200.00 50.00 12.50 3.13 0.78 0.20
β-隐黄质 β-cryptoxanthin 100.00 20.00 4.00 0.80 0.16 0.03
β-胡萝卜素 β-carotene 72.50 36.25 18.13 9.06 4.53 2.27

表3

4种类胡萝卜素的线性范围及相关系数

标准样品Standard sample 线性范围Linear range (mg/kg) 线性方程Linear equation 相关系数Correlation coefficent (r2)
叶黄素Lutein 6.0~200 Y1=0.015X1 0.9905
玉米黄质Zeaxanthin 0.0~200 Y2=0.3023X2+0.1171 0.9958
β-隐黄质 β-cryptoxanthin 0.0~100 Y3=0.1119X3-0.1048 0.9976
β-胡萝卜素 β-carotene 2.0~75 Y4=0.0023X4+0.0022 0.9988

表4

玉米自交系的类胡萝卜素含量统计分析

标准样品
Standard sample
最大值
Maximum
最小值
Minimum
平均值
Average
方差
Variance
叶黄素Lutein 99.98 0.56 56.32 776.29
玉米黄质Zeaxanthin 2.91 0.02 0.85 0.54
β-隐黄质 β-cryptoxanthin 2.20 0.94 1.31 0.11
β-胡萝卜素 β-carotene 26.61 0.61 5.75 35.57

图2

不同籽粒颜色等级中4种类胡萝卜素含量

表5

不同颜色等级中叶黄素、玉米黄质、β-隐黄质和β-胡萝卜素的含量分析

等级Level 叶黄素Lutein 玉米黄质Zeaxanthin β-隐黄质β-cryptoxanthin β-胡萝卜素β-carotene
1 1.69±0.76a nd 0.94±0.00a nd
2 50.53±5.44b 0.37±0.08a 1.10±0.03a 2.12±0.40a
3 71.05±3.62b 1.31±0.12b 1.51±0.06b 8.71±1.24b
4 54.76±9.02b 1.35±0.32b 1.56±0.11b 10.89±0.77b
平均值Average 56.32 0.85 1.31 5.75
变异系数Coefficient of variation (%) 49.46 87.06 25.19 103.65
FF-value 12.291 17.662 17.238 12.767
标准差Standard deviation 27.86 0.74 0.33 5.96

表6

R、G、B和Gray值与类胡萝卜素含量间的相关性分析

项目
Item
R G B Gray 叶黄素
Lutein
玉米黄质
Zeaxanthin
β-隐黄质
β-cryptoxanthin
β-胡萝卜素
β-carotene
R 1.000
G 0.912** 1.000
B 0.408** 0.596** 1.000
Gray 0.939** 0.992** 0.632** 1.000
叶黄素Lutein -0.256** -0.385** -0.619** -0.402** 1.000
玉米黄质Zeaxanthin -0.370** -0.520** -0.416** -0.498** 0.505** 1.000
β-隐黄质 β-cryptoxanthin -0.506** -0.598** -0.421** -0.589** 0.452** 0.815** 1.000
β-胡萝卜素 β-carotene -0.455** -0.532** -0.331** -0.520** 0.343** 0.582** 0.830** 1.000

表7

不同类群间类胡萝卜素含量的分析

类群Group 叶黄素Lutein 玉米黄质Zeaxanthin β-隐黄质 β-cryptoxanthin β-胡萝卜素 β-carotene
1 3.94±1.30 nd 0.94±0.00 nd
2 63.68±2.94 0.83±0.08 1.28±0.03 4.76±0.46
3 24.50±0.00 0.68±0.00 1.32±0.00 15.04±0.00
4 75.44±6.06 1.62±0.22 1.76±0.16 12.41±5.30
5 85.93±4.76 2.82±0.04 2.02±0.06 14.96±3.22
平均值Average 56.76 0.86 1.30 5.19
变异系数Coefficient of variation (%) 49.52 86.05 23.08 94.03
FF-value 22.87 19.28 20.05 16.29
标准差Standard deviation 28.11 0.74 0.30 4.88
[1] Nuss E T, Tanumihardjo S A. Maize:a paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(4):417-436.
doi: 10.1111/j.1541-4337.2010.00117.x
[2] Takaichi S. Carotenoids in algae:distributions,biosyntheses and functions. Marine Drugs, 2011, 9(6):1101-1118.
doi: 10.3390/md9061101
[3] 冯发强, 王国华, 王青峰, 等. 甜玉米类胡萝卜素合成关键基因PSY1、LCYECrtRB1的功能分析. 华南农业大学学报, 2015, 36(5):36-42.
[4] 肖亚冬, 宋江峰, 李大婧, 等. 甜玉米汁中类胡萝卜素热降解与其挥发性成分的相关性分析. 食品科学, 2018, 39(8):27-32.
[5] Lux P E, Schneider J, Müller F, et al. Location and variety but not phosphate starter fertilization influence the profiles of fatty acids,carotenoids,and tocochromanols in kernels of modern corn (Zea mays L.) hybrids cultivated in Germany. Journal of Agricultural and Food Chemistry, 2021, 69(9):2845-2854.
doi: 10.1021/acs.jafc.0c07571
[6] Muzhingi T, Yeum K J, Russell R M, et al. Determination of carotenoids in yellow maize,the effects of saponification and food preparations. International Journal for Vitamin and Nutrition Research, 2008, 78(3):112-120.
doi: 10.1024/0300-9831.78.3.112 pmid: 19003733
[7] Li J, Xie J, Yu J, et al. Reversed-phase high-performance liquid chromatography for the quantification and optimization for extracting 10 kinds of carotenoids in pepper (Capsicum annuum L.) leaves. Journal of Agricultural and Food Chemistry, 2017, 65(38):8475-8488.
doi: 10.1021/acs.jafc.7b02440
[8] Osterrothová K, Culka A, Němečková K, et al. Analyzing carotenoids of snow algae by raman microspectroscopy and high-performance liquid chromatography. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 212:262-271.
doi: 10.1016/j.saa.2019.01.013
[9] Bijttebier S, D'Hondt E, Noten B, et al. Ultra high performance liquid chromatography versus high performance liquid chromatography:stationary phase selectivity for generic carotenoid screening. Journal of Chromatography A, 2014, 1332:46-56.
doi: 10.1016/j.chroma.2014.01.042
[10] Végvári G, Jócsák I, Kappel N, et al. Carotenoid quantification of Cucurbita spp. by spectrophotometry,high-performance liquid chromatography and photoacoustics. Acta Scientiarum Polonorum Technologia Alimentaria, 2019, 18(2):143-152.
[11] Donato P, Inferrera V, Sciarrone D, et al. Supercritical fluid chromatography for lipid analysis in foodstuffs. Journal of Separation Science, 2017, 40(1):361-382.
doi: 10.1002/jssc.201600936 pmid: 27696781
[12] Andreeva A, Apostolova I, Velitchkova M. Temperature dependence of resonance Raman spectra of carotenoids. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2011, 78(4):1261-1265.
doi: 10.1016/j.saa.2010.12.071
[13] Girme A, Pawar S, Ghule C, et al. Bioanalytical method development and validation study of neuroprotective extract of kashmiri saffron using ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS):in vivo pharmacokinetics of apocarotenoids and carotenoids. Molecules, 2021, 26(6):1815.
doi: 10.3390/molecules26061815
[14] 王伟杰, 徐昌杰. 天然类胡萝卜素生物合成与生物技术应用. 细胞生物学杂志, 2006, 28(6):839-843.
[15] 李大婧, 肖亚冬, 何美娟, 等. 不同热处理过程中鲜食甜玉米类胡萝卜素含量变化研究. 食品科学, 2015, 36(23):78-82.
[16] Scott C E, Eldridge A L. Comparison of carotenoid content in fresh,frozen and cannedcorn. Journal of Food Composition and Analysis, 2005, 18(6):551-559.
doi: 10.1016/j.jfca.2004.04.001
[17] Rapp L M, Maple S S, Choi J H. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Investigative Ophthalmology and Visual Science, 2000, 41(5):1200-1209.
pmid: 10752961
[18] 姜立, 朱长甫, 于婷婷, 等. 类胡萝卜素的研究进展. 生物化工, 2020, 6(6):136-139.
[19] 李福枝, 刘飞, 曾晓希, 等. 天然类胡萝卜素的研究进展. 食品工业科技, 2007(9):227-232.
[20] 陈洁琼, 宋江峰, 何美娟, 等. 鲜食玉米籽粒中主要类胡萝卜素鉴定与含量分析. 食品科学, 2015, 36(18):108-113.
[21] 章园, 宋江峰, 何美娟, 等. 黄玉米籽粒发育过程中类胡萝卜素与色泽的变化. 食品科学, 2015, 36(19):77-82.
[22] 严华, 别玮, 崔凤云, 等. 高效液相色谱法分析沙棘中类胡萝卜素的含量. 食品安全质量检测学报, 2021, 12(11):4459-4466.
[23] 郭艳, 魏文婧, 刘世红, 等. 甘蓝黄花和白花在着色过程中类胡萝卜素代谢分析. 分子植物育种(2022-03-18)[2022-04-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20220317.1614.018.html .
[24] 刘志斋, 吴迅, 刘海利, 等. 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构. 中国农业科学, 2012, 45(11):2107-2138.
[25] Anne C, Kurilich, John A. Juvik Simultaneous quantification of carotenoids and tocopherols in corn kernel extracts by HPLC. Journal of Liquid Chromatography Related Technologies, 1999, 22(19):2925-2934.
doi: 10.1081/JLC-100102068
[26] 黄德海. 高效液相色谱法在食品安全检验中的应用. 食品安全导刊, 2021(25):154-155.
[27] Baseggio M, Murray M, Magallanes-Lundback M, et al. Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome, 2020, 13(1):e20008.
[28] 周毅, 付志远, 李青, 等. 高油和普通玉米自交系类胡萝卜素和生育酚含量的比较分析. 作物学报, 2009, 35(11):2073-2084.
[29] Hwang T, Ndolo V U, Katundu M, et al. Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi. Food Chemistry, 2016, 196:1315-1324.
doi: 10.1016/j.foodchem.2015.10.067
[30] Hu Q P, Xu J G. Profiles of carotenoids,anthocyanins,phenolics,and antioxidant activity of selected color waxy corn grains during maturation. Journal of Agricultural and Food Chemistry, 2011, 59(5):2026-2033.
doi: 10.1021/jf104149q
[31] Hu X, Liu J, Li W, et al. Biosynthesis and accumulation of multi-vitamins in black sweet corn (Zea mays L.) during kernel development. Journal of the Science of Food and Agriculture, 2020, 100(14):5230-5238.
doi: 10.1002/jsfa.10573
[32] OʼHare T J, Fanning K J, Martin I F. Zeaxanthin biofortification of sweet-corn and factors affecting zeaxanthin accumulation and colour change. Archives of Biochemistry and Biophysics, 2015, 572:184-187.
doi: S0003-9861(15)00040-5 pmid: 25637659
[1] 张东霞, 秦安振. 冬小麦-夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022, (6): 145–151
[2] 乔江方, 张盼盼, 邵运辉, 刘京宝, 李川, 张美微, 黄璐. 不同种植密度和品种对夏玉米物质生产和产量构成的影响[J]. 作物杂志, 2022, (6): 186–192
[3] 郭欢乐, 汤彬, 李涵, 曹钟洋, 曾强, 刘良武, 陈志辉. 湖南省玉米地方品种表型性状综合评价及类群划分[J]. 作物杂志, 2022, (6): 33–41
[4] 续创业, 张建军, 周刚, 张铠鹏, 朱晓惠, 王甲玺, 党翼, 赵刚, 王磊, 李尚中, 樊廷录. 陇东旱塬密植高产机械粒收玉米新品种筛选与评价[J]. 作物杂志, 2022, (5): 104–110
[5] 李龙, 肖让, 张永玲. 氮磷钾配施对制种玉米产量及经济效益的影响[J]. 作物杂志, 2022, (5): 111–117
[6] 历艳璐, 王俊鹏, 于欣志, 魏宏磊, 陈麒宇, 赵洪祥, 徐晨, 边少锋, 张治安. 冷凉区不同地膜覆盖对玉米干物质和氮素积累与分配的影响[J]. 作物杂志, 2022, (5): 124–129
[7] 张建业, 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印. 盐碱胁迫下S-诱抗素对玉米萌发及生长的影响[J]. 作物杂志, 2022, (5): 167–173
[8] 周超, 张田田, 杨丽娜, 张勇, 马冲, 代伟程, 吴翠霞, 宋敏. 根部吸收氟啶虫酰胺在玉米植株中的分布特点及对玉米蚜虫活性效果评价[J]. 作物杂志, 2022, (5): 261–266
[9] 段梦冉, 刘丰泽, 葛建镕, 易红梅, 杨洪明, 高玉倩, 岳鹏武, 马文宇, 班秀丽, 王凤格. 吉林省主推玉米品种的SSR分子标记纯度鉴定[J]. 作物杂志, 2022, (5): 34–41
[10] 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187–192
[11] 王家保, 冀怀远, 梅家法, 陶志国, 疏志峰, 江三桥. 玉米新品种荃科玉900的选育与栽培制种技术[J]. 作物杂志, 2022, (4): 267–270
[12] 徐世英, 王宁, 程皓, 冯万军. 玉米杂交种及其亲本苗期性状对低氮胁迫的动态响应[J]. 作物杂志, 2022, (4): 90–98
[13] 顾银山, 张士龙, 贾海涛, 李小琴, 贺正华, 焦春海, 田小海, 黄益勤, 危文亮. 超甜玉米果皮柔嫩度与成分含量动态变化及相互关系[J]. 作物杂志, 2022, (3): 134–142
[14] 杨奥军, 常巧玲, 王鹏, 王芳, 高妍婷, 周广阔, 宋小佳, 韦恩成. 外源5-ALA对干旱胁迫下玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2022, (3): 194–199
[15] 张军, 陈顺全, 张文庆, 李高超, Bell. 10份玉米品种在喀麦隆的适应性研究[J]. 作物杂志, 2022, (3): 87–91
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[2] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[3] 王袁,郭泽,李晓辉,徐世晓,邢学霞,张思琦,何佳,刘超,陈芳,杨铁钊. 不同温度条件下根结线虫侵染对烟草根系的影响[J]. 作物杂志, 2018, (4): 161 –166 .
[4] 方婧雯,邬燕,刘志华. 盐胁迫对罗布麻种子萌发及生理特性的影响[J]. 作物杂志, 2018, (4): 167 –174 .
[5] 李程勋,李爱萍,徐晓俞,郑开斌. 浅谈木豆的抗逆机制及在福建的应用前景[J]. 作物杂志, 2018, (4): 28 –31 .
[6] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69 –78 .
[7] 张明聪,战英策,何松榆,金喜军,王孟雪,任春元,张玉先. 氮密交互对红小豆干物质积累规律及产量的影响[J]. 作物杂志, 2018, (1): 141 –146 .
[8] 王春蕾,方志军,许艳蕊,卢晓平,穆春华,单凯,郝鲁江. 基于高通量测序技术分析使它隆对玉米根系内生菌多样性的影响[J]. 作物杂志, 2018, (1): 160 –165 .
[9] 郝艳芳,王良群,刘勇,张微,杨伟,白鸿雁,武擘. 高粱幼叶细胞悬浮系的建立[J]. 作物杂志, 2018, (1): 35 –40 .
[10] 张微,王良群,刘勇,郝艳芳,杨伟,白鸿雁,武擘. 农杆菌介导高粱遗传转化的相关因素优化[J]. 作物杂志, 2018, (1): 56 –61 .