作物杂志,2023, 第5期: 71–80 doi: 10.16035/j.issn.1001-7283.2023.05.011

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

马铃薯氮同化关键酶基因StGOGATs的克隆及结构与功能分析

韩祉君1(), 赵艳菲1, 卢悦1, 李爽2, 张嘉越1, 韩玉珠1(), 张婧颖1()   

  1. 1吉林农业大学园艺学院,130118,吉林长春
    2吉林农业大学教研基地管理处,130118,吉林长春
  • 收稿日期:2022-04-12 修回日期:2023-07-17 出版日期:2023-10-15 发布日期:2023-10-16
  • 通讯作者: 韩玉珠,主要从事马铃薯遗传育种研究,E-mail:hanyuzhu@jlau.edu.cn; 张婧颖为共同通信作者,主要从事马铃薯分子生物学研究,E-mail:zhangjingying@jlau.edu.cn
  • 作者简介:韩祉君,主要从事马铃薯生长发育研究,E-mail:20200147@mails.jlau.edu.cn
  • 基金资助:
    吉林省马铃薯遗传育种与良种繁育创新团队(20200301025RQ)

Cloning and Analysis of the Structure and Function of the Key Enzyme Genes StGOGATs of Potato Nitrogen Assimilation

Han Zhijun1(), Zhao Yanfei1, Lu Yue1, Li Shuang2, Zhang Jiayue1, Han Yuzhu1(), Zhang Jingying1()   

  1. 1College of Horticulture, Jilin Agricultural University, Changchun 130118, Jilin, China
    2Teaching and Research Base Management Office, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2022-04-12 Revised:2023-07-17 Online:2023-10-15 Published:2023-10-16

摘要:

以马铃薯品种春薯4号组培苗为材料,对谷氨酸合成酶基因StFd-GOGATStNADH-GOGAT进行克隆及结构与功能分析。结果表明,StFd-GOGATStNADH-GOGAT分别由1622及2210个氨基酸组成,分子量分别为176.106和242.021kDa,预测表明,StGOGATs蛋白均为稳定、亲水性蛋白。蛋白结构域分析发现,StGOGATs蛋白在前1700个氨基酸位置上共同属于gltB家族,在氮代谢中起作用,可以催化酰胺氮从谷氨酰胺水解成谷氨酸和氨并转移到合适的底物上;基因定位显示,StGOGATs均在马铃薯3号染色体前850kb的位置上;对StGOGATs进行启动子顺式作用元件分析,发现其与植物光合作用及含氮化合物的合成等有关;构建了系统进化树,发现其与番茄及番茄野生种具有较高的同源性。蛋白互作预测显示,StFd-GOGAT与StNADH-GOGAT蛋白间存在直接的互作关系;三级结构预测显示,只有StNADH-GOGAT具有自身同源二聚体结构;亚细胞定位推测StFd-GOGAT和StNADH-GOGAT分别在细胞质及叶绿体中行使功能。初步明确StGOGATs蛋白特性、结构与功能,为后续探究其在GS/GOGAT循环中分子调控机制奠定理论基础。

关键词: GS/GOGAT循环, StGOGATs, 蛋白质结构, 蛋白互作, 启动子

Abstract:

Two glutamate synthase genes (StFd-GOGAT, StNADH-GOGAT) were cloned and their structures and functions were analyzed using potato cultivar Chunshu 4. The results showed that the StFd- GOGAT and StNADH-GOGAT consisted of 1622 and 2210 amino acids, respectively, with protein molecular weights of 176.106 and 242.021kDa, respectively. Prediction showed that StGOGATs were stable and hydrophilic proteins. Analysis of their protein domains showed that StGOGATs proteins belonged to the gltB family in the first 1700 amino acid positions, which played a role in nitrogen metabolism and could catalyze the conversion of amide nitrogen from glutamine. It was hydrolyzed into glutamic acid and ammonia and transferred to suitable substrates. Gene mapping showed that StGOGATs were located in the first 850kb of potato chromosome 3. Promoter cis-acting element analysis of StGOGATs showed that they were related to plant photosynthesis and the synthesis of nitrogen compounds. It was found that they had a high homology with Solanum lycopersicum and Solanum pennellii by constructing a phylogenetic tree. The protein interaction prediction showed that there was a direct interaction between StFd-GOGAT and StNADH-GOGAT. The tertiary structure prediction showed that only StNADH-GOGAT had its own homodimer structure. Subcellular localization speculated that StFd-GOGAT and StNADH-GOGAT function in the cytoplasm and chloroplast, respectively. The properties, structure and function of StGOGATs were preliminarily clarified, laying a theoretical foundation for the subsequent exploration of their molecular regulation mechanism in the GS/GOGAT cycle.

Key words: GS/GOGAT cycle, StGOGATs, Protein structure, Protein interaction, Promoter

表1

引物序列

引物名称Primer name 引物序列Primer sequence
StFd-GOGAT F ATGGCGGTGAATTCCGTGGC
StFd-GOGAT R TTATTTTAATGGCATCTCTGCAGACTG
StNADH-GOGAT F GTGGTGGTGTTGCCTATGTTCTTGA
StNADH-GOGAT R TTGTGTTACGCTGGTGTTGCTGTAT

表2

在线分析软件名称及网址

工具Tool 网址/软件URL/Software 功能Function
ProtParam http://web.expasy.org/protparam/ 蛋白理化性质分析
ProtScale https://web.expasy.org/protscale/ 蛋白亲疏水性分析
TMHMM 2.0 http://www.cbs.dtu.dk/services/TMHMM/ 氨基酸跨膜结构预测
SignalP 5.0 http://www.cbs.dtu.dk/services/SignalP/ 信号肽预测
NetPhos 3.1 http://www.cbs.dtu.dk/services/NetPhos/ 磷酸化位点预测
InterProScan http://www.ebi.ac.uk/interpro/search/sequence/ 蛋白结构域预测
CD-Search https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi 保守结构域搜索
SOPMA https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html 蛋白二级结构预测
SWISS-MODEL https://swissmodel.expasy.org/interactive 蛋白三级结构预测
PSORT Ⅱ https://psort.hgc.jp/form2.html 亚细胞定位预测
Cytoscape https://cytoscape.org/ 蛋白互作预测
MG2C http://mg2c.iask.in/mg2c_v2.1/ 染色体定位查看
Plant CARE http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ 启动子元件预测
MEGA 7.0 https://www.megasoftware.net/ 系统进化树构建

图1

StFd-GOGAT克隆载体菌液PCR验证 M:DL15000;1:阴性对照;2:阳性对照;3~8:StFd-GOGAT菌液

图2

StNADH-GOGAT克隆载体菌液PCR验证 M:DL15000;1:阳性对照;2:阴性对照;3-5:StNADH-GOGAT菌液

表3

StGOGATs蛋白理化性质分析

名称
Name
氨基酸
数量
Number of
amino acids
分子量
Molecular
weight
(kDa)
理论等电点
Theoretical
isoelectric
point
原子数
Atomic
number
不稳定
系数
Instability
factor
脂肪
指数
Fat
index
亲水性平均值
Average
hydro philicity
(GRAVY)
负电荷残基
Negatively
charged residues
(Asp+Glu)
正电荷残基
Positively
charged residues
(Arg+Lys)
StFd-GOGAT 1622 177.106 6.20 24891 39.78 89.86 -0.167 184 171
StNADH-GOGAT 2210 242.021 6.42 34005 37.34 84.05 -0.279 280 265

图3

StGOGAT氨基酸组成分析

图4

StGOGATs蛋白亲疏水性分析

图5

StGOGATs氨基酸跨膜结构预测

图6

StGOGATs蛋白信号肽预测

图7

StGOGATs氨基酸残基潜在磷酸化位点预测

图8

StGOGATs蛋白结构域预测

图9

StGOGATs蛋白二级结构预测

图10

StGOGATs蛋白二级各结构元件占比

图11

StGOGATs蛋白三级结构预测

图12

StNADH-GOGAT蛋白同源二聚体结构预测

图13

StGOGATs蛋白互作网络图

图14

StGOGATs染色体定位图谱

表4

StGOGATs启动子顺式作用元件表

元件
Element
功能
Function
数量Number
StFd-GOGAT StNADH-GOGAT
TGACG-motif 参与MeJA反应的顺式调节元件 1 8
CGTCA-motif 参与MeJA反应的顺式调节元件 1 8
TC-rich repeats 参与防御和压力反应的顺式作用元件 2 0
Box 4 参与光反应的保守DNA模块的一部分 1 0
G-Box 参与光反应的顺式调节元件 1 11
GCN4-motif 参与胚乳表达的顺式调节元件 0 3
ABRE 参与脱落酸反应的顺式作用元件 1 8
O2-site 参与玉米醇溶蛋白代谢调节的顺式调节元件 2 0
P-box 赤霉素反应元件 3 2
TGA-element 生长素反应元件 1 1
AuxRR-core 参与生长素反应的顺式调节元件 0 1
AuxRE 生长素反应元件的一部分 0 1
AE-box 光响应模块的一部分 0 3
GT1-motif 光响应元件 2 2
LAMP-element 光响应元件的一部分 1 0
I-box 光响应元件的一部分 2 0
TCT-motif 光响应元件的一部分 1 2
GATA-motif 光响应元件的一部分 0 2
TCCC-motif 光响应元件的一部分 0 1
GTGGC-motif 光响应元件的一部分 1 0
circadian 参与昼夜节律控制的顺式调节元件 1 0
CAT-box 与分生组织表达相关的顺式调节元件 2 4
MSA-like 参与细胞周期调控的顺式作用元件 0 1
ARE 厌氧诱导所必需的顺式调节元件 2 7
MBS 与干旱诱导有关的MYB结合位点 5 5
TCA-element 与水杨酸反应有关的顺式作用元件 0 4
CCAAT-box MYBHv1结合位点 1 1
MRE 参与光反应的MYB结合位点 1 0
AT-rich element 富含AT的DNA结合蛋白(ATBP-1)结合位点 1 1
HD-Zip 1 参与栅栏叶肉细胞分化的元素 1 0

图15

StGOGATs启动子顺式作用元件

图16

StGOGATs系统进化树

[1] 郝凯, 贾立国, 秦永林, 等. 氮素对马铃薯源-库关系影响研究进展. 作物杂志, 2020(3):22-26.
[2] 张静, 蒙美莲, 王颖慧, 等. 氮磷钾施用量对马铃薯产量及品质的影响. 作物杂志, 2012(4):124-127.
[3] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 2010, 105(7):1141-1157.
doi: 10.1093/aob/mcq028 pmid: 20299346
[4] McAllister C H, Beatty P H, Good A G. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnology Journal, 2012, 10(9):1011-1025.
doi: 10.1111/j.1467-7652.2012.00700.x pmid: 22607381
[5] 刘秀杰, 宫占元. 植物氮素吸收利用研究进展. 现代化农业, 2012(8):20-21.
[6] 马雪峰, 高旻, 程治军. 植物氮素吸收与利用的分子机制研究进展. 作物杂志, 2013(4):32-38.
[7] 张婷婷, 孟丽丽, 陈有君, 等. 不同马铃薯品种的氮效率差异研究. 中国土壤与肥料, 2021(1):63-69.
[8] Fontaine J X, Tercélaforgue T, Armengaud P, et al. Characterization of a NADH-Dependent glutamate dehydrogenase mutant of demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Bulletin of the American Physical Society, 2014.
[9] 张华珍, 徐恒玉. 植物氮素同化过程中相关酶的研究进展. 北方园艺, 2011(20):180-183.
[10] 牛超, 刘关君, 曲春浦, 等. 谷氨酸合成酶基因及其在植物氮代谢中的调节作用综述. 江苏农业科学, 2018, 46(9):10-16.
[11] Konishi N, Ishiyama K, Matsuoka K, et al. NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root. Physiologia Plantarum, 2014, 152(1):138-151.
doi: 10.1111/ppl.12177
[12] 朱静, 岳思宁, 陈琛, 等. 谷氨酸合酶在灵芝中生物学功能的研究. 南京农业大学学报, 2019, 42(6):1073-1079.
[13] 陈丽华, 刘丽君, 刘页丽, 等. 不同基因型大豆Fd-GOGAT基因cDNA序列的克隆与分析. 大豆科学, 2011, 30(3):374-378.
[14] 陈阳, 孙华山, 王玉书, 等. 草地早熟禾NADH-GOGAT基因的克隆及表达分析. 草地学报, 2019, 27(2):459-465.
doi: 10.11733/j.issn.1007-0435.2019.02.026
[15] 张云, 赵艳菲, 王雅平, 等. 延薯4号马铃薯对氮素的生理生化响应及转录组分析. 广东农业科学, 2021, 48(2):56-66.
[16] 赵艳菲, 张嘉越, 韩玉珠. 马铃薯氮代谢途径中Fd-GOGAT基因的克隆及生物信息学分析//中国作物学会马铃薯专业委员会,马铃薯产业与美丽乡村(2020). 哈尔滨: 黑龙江科学技术出版社, 2020.
[17] Kishorekumar R, Bulle M, Wany A, et al. An overview of important enzymes involved in nitrogen assimilation of plants. Methods in Molecular Biology, 2020, 2057:1-13.
doi: 10.1007/978-1-4939-9790-9_1 pmid: 31595465
[18] Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 2009, 182(3):608-620.
doi: 10.1111/j.1469-8137.2009.02823.x pmid: 19422547
[19] 黄成能. N胁迫对柑橘营养生长及GS/GOGAT循环酶基因表达影响的研究. 长沙:湖南农业大学, 2014.
[20] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16(6):735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[21] Feraud M, Masclaux-Daubresse C, Ferrario-Méry S, et al. Expression of a ferredoxin-dependent glutamate synthase gene in mesophyll and vascular cells and functions of the enzyme in ammonium assimilation in Nicotiana tabacum (L.). Planta, 2005, 222(4):667-677.
doi: 10.1007/s00425-005-0013-2
[22] Lea P J, Miflin B J. Alternative route for nitrogen assimilation in higher plants. Nature, 1974, 251(5476):614-616.
doi: 10.1038/251614a0
[23] Wallsgrove R M, Lea P J, Miflin B J. Distribution of the enzymes of nitrogen assimilation within the pea leaf cell. Plant Physiology, 1979, 63(2):232-236.
doi: 10.1104/pp.63.2.232 pmid: 16660703
[24] Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization,relative proportion and their role in ammonium assimilation or nitrogen transport. Planta, 2000, 211(6):800-806.
pmid: 11144264
[25] Loulakakis K A, Primikirios N I, Nikolantonakis M A, et al. Immunocharacterization of Vitis vinifera L. ferredoxin-dependent glutamate synthase,and its spatial and temporal changes during leaf development. Planta, 2002, 215(4):630-638.
doi: 10.1007/s00425-002-0785-6
[26] Zeng D D, Qin R, Li M, et al. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Molecular Genetics and Genomics, 2017, 292(2):385-395.
doi: 10.1007/s00438-016-1275-z
[27] 张翼飞. 施氮对甜菜氮素同化与碳代谢的调控机制研究. 哈尔滨:东北农业大学, 2013.
[28] 侯昕, 徐新翔, 贾志航, 等. 供氮水平对苹果砧木‘M9T337’幼苗生长和GSGOGATAS基因表达的影响. 园艺学报, 2019, 46(11):2239-2248.
doi: 10.16420/j.issn.0513-353x.2018-1010
[29] Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany, 2002, 53:917-925.
doi: 10.1093/jexbot/53.370.917 pmid: 11912234
[1] 曹丽茹, 王国瑞, 张新, 魏良明, 魏昕, 张前进, 邓亚洲, 王振华, 鲁晓民. 玉米HSP90基因家族的全基因组鉴定与分析[J]. 作物杂志, 2021, (5): 28–34
[2] 王莉, 王作平, 张中保, 白玲, 吴忠义. 玉米早期籽粒中强表达启动子的筛选[J]. 作物杂志, 2020, (4): 114–120
[3] 闫丽,杨强,邵宇鹏,李丹丹,王志坤,李文滨. 大豆GmWRI1a基因启动子克隆及序列分析[J]. 作物杂志, 2017, (2): 51–58
[4] 刘建伟, 陈晓峰, 刘广富, 郭宗端, 李新柱, 胡兆平, 张亮. 大豆CYP78A5基因组织特异性启动子的克隆及表达分析[J]. 作物杂志, 2014, (1): 54–58
[5] 张红梅, 王国英, 张中东, 等. 农杆菌介导的玉米遗传转化进展[J]. 作物杂志, 2000, (6): 1–4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!