作物杂志,2021, 第5期: 28–34 doi: 10.16035/j.issn.1001-7283.2021.05.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米HSP90基因家族的全基因组鉴定与分析

曹丽茹(), 王国瑞(), 张新, 魏良明, 魏昕, 张前进, 邓亚洲, 王振华(), 鲁晓民()   

  1. 河南省农业科学院粮食作物研究所,450002,河南郑州
  • 收稿日期:2020-10-10 修回日期:2021-01-15 出版日期:2021-10-15 发布日期:2021-10-14
  • 通讯作者: 王振华,鲁晓民
  • 作者简介:曹丽茹,主要从事玉米遗产育种研究和生物信息数据分析,E-mail: caoliru008@126.com
  • 基金资助:
    河南省农业科学院杰出青年发展基金(2020JQ02)

Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize

Cao Liru(), Wang Guorui(), Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua(), Lu Xiaomin()   

  1. Grain Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2020-10-10 Revised:2021-01-15 Online:2021-10-15 Published:2021-10-14
  • Contact: Wang Zhenhua,Lu Xiaomin

摘要:

热激蛋白90(HSP90)广泛参与生物体的生长发育,且积极响应多种非生物胁迫。为全面解析玉米HSP90基因家族信息,对HSP90基因家族进化树、基因结构、保守基序(motif)、GO富集和组织表达模式等进行分析,并进一步分析ZmHSP90-1基因响应干旱胁迫的表达模式及蛋白互作关系。结果显示,从玉米全基因组水平共鉴定到11个ZmHSP90家族基因,被划分为5个亚族(I~V);相邻进化树分支上的ZmHSP90基因具有相似的motif和基因结构;GO富集分析显示,11个ZmHSP90基因均参与了蛋白质折叠过程;表达模式分析显示,11个ZmHSP90基因在不同组织或器官中均有表达,其中ZmHSP90-1基因的表达量相对较高;ZmHSP90-1基因在耐旱性强的玉米自交系中具有更高的表达量,且积极响应干旱和复水过程;蛋白互作预测显示,ZmHSP90-1可能与其互作蛋白协同响应非生物胁迫,发挥生物学功能。

关键词: 玉米, 热激蛋白90, 表达水平, 干旱响应, 蛋白互作

Abstract:

Heat shock protein 90 (HSP90) are widely involved in the growth and development of organisms and actively responds to a variety of abiotic stresses. In order to analyze HSP90 gene family of maize, the phylogenetic tree gene structure, conserved motif, GO enrichment and tissue expression pattern of the family gene were analyzed, and further analyzed the expression pattern in response to drought stress and protein interaction relationship. The results showed that the eleven ZmHSP90 genes were identified from the whole genome level of maize and ZmHSP90 were divided into five groups (I-V). ZmHSP90 genes on adjacent phylogenetic tree branches had similar gene structure and motif. GO enrichment analysis showed that the eleven ZmHSP90 genes were involved in protein folding process. The expression pattern analysis showed that the eleven ZmHSP90 genes were expressed in different tissues or organs, and ZmHSP90-1 had relatively higher expression. ZmHSP90-1 gene had a higher expression level in drought-tolerant maize inbred lines, and responds to drought and rewater processes rapidly. Protein interaction prediction showed that ZmHSP90-1 might cooperate with its interacting protein to respond to abiotic stress, thus exerting its biological function.

Key words: Maize, HSP90, Expression level, Drought response, Protein interaction

表1

玉米HSP90基因家族

基因编号
Gene code
基因ID
Gene ID
染色体
Chromosome
基因组位置
Genomic location
内含子个数
Number of
introns
开放阅读
框长度
ORF length(bp)
氨基酸长度
Amino
acid length
蛋白
分子量
MW (kDa)
等电点
PI
亚细胞定位预测
Subcellular
location prediction
ZmHSP90-1 Zm00001d006008 2 195179025~195182945 3 2097 698 80.72 4.73 细胞质
ZmHSP90-2 Zm00001d014792 5 63348326~63353481 15 2427 808 92.87 4.62 内质网、线粒体
ZmHSP90-3 Zm00001d020827 7 134001581~134006410 19 2394 797 90.20 4.63 内质网
ZmHSP90-4 Zm00001d020898 7 135842402~135846744 3 2100 699 80.27 4.75 细胞质
ZmHSP90-5 Zm00001d024903 10 93908317~93911235 2 2145 714 81.80 4.77 细胞质
ZmHSP90-6 Zm00001d031332 1 186376331~186380883 4 2028 675 77.38 4.73 细胞质
ZmHSP90-7 Zm00001d035285 6 19340069~19371142 20 2382 793 89.70 5.03 内质网
ZmHSP90-8 Zm00001d036401 6 86902776~86908235 15 2415 804 92.57 4.67 内质网、线粒体
ZmHSP90-9 Zm00001d041719 3 134955964~134966224 20 2442 813 91.18 4.96 内质网
ZmHSP90-10 Zm00001d052809 4 201661975~201666670 19 2376 791 89.05 4.78 内质网
ZmHSP90-11 Zm00001d052855 4 202671658~202675792 3 2100 699 80.36 4.69 细胞质

图1

玉米、拟南芥和高粱HSP90蛋白的进化树分析

图2

玉米HSP90家族成员的motif和基因结构分析 a图中不同颜色代表不同的motifs;b图中绿色代表UTR区域,黄色代表CDS区域

表2

玉米HSP90基因家族的GO分析

GO类型
GO type
GO名称
GO ID
GO途径
GO term
基因编号
Gene code
生物进程 GO:0006457 蛋白质的折叠 ZmHSP90-1~11
Biological process GO:0034605 热响应 ZmHSP90-1ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0050821 蛋白质的稳定 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0009816 病菌的防御 ZmHSP90-5
GO:0061077 蛋白质的折叠 ZmHSP90-5
分子功能 GO:0005524 与ATP位点结合 ZmHSP90-1~11
Molecular function GO:0051082 与未知蛋白结合 ZmHSP90-1、ZmHSP90-3~11
GO:0000166 与核酸结合 ZmHSP90-5
细胞组分 GO:0005737 细胞质 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
Cellular component GO:0005829 胞质溶胶 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0005886 质膜 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0009986 细胞表面 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0032991 含蛋白质复合物 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0048471
细胞质区域
ZmHSP90-1ZmHSP90-2、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、
ZmHSP90-8、ZmHSP90-11
GO:0009570 叶绿体基质 ZmHSP90-3、ZmHSP90-7、ZmHSP90-9、ZmHSP90-10
GO:0005783 内质网 ZmHSP90-8

图3

玉米HSP90家族基因在8个组织的表达谱

图4

ZmHSP90-1在干旱胁迫下的表达分析 M为抗旱型自交系郑8713,F为敏感型自交系郑K9713,Y指玉米幼叶片,J指玉米幼茎,G指玉米幼根,R1d和R3d分别表示复水1d和3d

表3

ZmHSP90-1功能互作蛋白预测

互作基因Interaction gene 基因描述Gene description 氨基酸长度Amino acid length 互作系数Interaction coefficient
GRMZM2G105019 SGT1疾病抗性蛋白同源物1 361 0.995
GRMZM2G149704 SGT1蛋白质同源物A 361 0.992
GRMZM2G329306 肽基脯氨酰顺反异构酶CYP40 389 0.979
GRMZM2G154312 伴侣蛋白SBA1 192 0.963
GRMZM2G038108 HSP蛋白ATPase的激活剂 446 0.958
GRMZM2G021816 HSP90蛋白ATPase的激活剂 348 0.958
GRMZM2G010944 蛋白质精氨酸N-甲基转移酶1.5 197 0.958
GRMZM5G868908 整合素β-1-结合蛋白2 225 0.953
GRMZM2G536120 锚蛋白重复家族蛋白 376 0.940
GRMZM2G155314 锚蛋白1 417 0.940
[1] 于志晶, 尚丽霞, 蔡勤安, 等. 水稻热激蛋白基因HSP90转化大豆的研究. 大豆科学, 2016, 35(2):222-227.
[2] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9(5):244-252.
doi: 10.1016/j.tplants.2004.03.006
[3] Sangster T A, Queitsch C. The HSP90 chaperone complex,an emerging force in plant development and phenotypic plasticity. Current Opinion in Plant Biology, 2005, 8(1):86-92.
pmid: 15653405
[4] 汤佳乐, 徐海, 苑平, 等. 植物Hsp90s与耐热性关系的研究进展. 生物技术通报, 2020, 339(10):178-184.
[5] Reddy R K, Chaudhary S, Patil P, et al. The 90 kDa heat shock protein (hsp90) is expressed throughout Brassica napus seed development and germination. Plant Science, 1998, 131(2):131-137.
doi: 10.1016/S0168-9452(97)00254-9
[6] Wang G F, Wei X, Fan R, et al. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90):functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytologist, 2011, 191(2):418-431.
doi: 10.1111/nph.2011.191.issue-2
[7] Swindell W R, Huebner M, Weber A P. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 2007, 8(1):125.
doi: 10.1186/1471-2164-8-125
[8] Johnson J L, Brown C J C S, Chaperones. Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress and Chaperones, 2009, 14(1):83-94.
doi: 10.1007/s12192-008-0058-9 pmid: 18636345
[9] Song H, Zhao R, Fan P, et al. Overexpression of AtHsp90.2,AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta, 2009, 229(4):955-964.
doi: 10.1007/s00425-008-0886-y
[10] Chen C, Xia R, Chen H, et al. TBtools,a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv, 2018: 289660.
[11] 卢云泽. 小麦灌浆期旗叶响应高温胁迫的蛋白组学与热响应关键基因HSP90的全基因组分析. 咸阳:西北农林科技大学, 2018.
[12] Chou K C, Shen H B. Cell-PLoc:a package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2007, 3(2):153-162.
doi: 10.1038/nprot.2007.494
[13] Meinke D W. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytologist, 2020, 226(2):306-325.
doi: 10.1111/nph.16071 pmid: 31334862
[14] Oh S E, Yeung C, Babaei-Rad R, et al. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis. BMC Research Notes, 2014, 7(1):643.
doi: 10.1186/1756-0500-7-643
[15] Inoue H, Li M, Schnell D J, et al. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8):3173-3178.
[16] Song H, Fan P, Shi W, et al. Expression of five AtHsp90 genes in Saccharomyces cerevisiae reveals functional differences of AtHsp90s under abiotic stresses. Journal of Plant Physiology, 2010, 167(14):1172-1178.
doi: 10.1016/j.jplph.2010.03.016
[17] Velinov V, Vaseva I, Zehirov G, et al. Overexpression of the NMig1 gene encoding a NudC domain protein enhances root growth and abiotic stress tolerance in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11:815.
doi: 10.3389/fpls.2020.00815
[18] Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum:brothers in arms. Molecular Cell, 2010, 40(2):238-252.
doi: 10.1016/j.molcel.2010.10.001 pmid: 20965419
[19] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016, 22(6):52-60.
[20] Zhang J, Li J, Liu B, et al. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns,localization,and heat stress responses. BMC Genomics, 2013, 14(1):532.
doi: 10.1186/1471-2164-14-532
[21] 刘玲玲. 玉米耐旱相关基因ZmHSP90-1ZmMYB-R1的序列特征分析与功能验证. 哈尔滨:东北农业大学, 2012.
[22] 肖化兴, 王立丰, 王萌. 橡胶树逆境胁迫响应基因HbHSP90.1的结构与功能分析. 分子植物育种, 2019, 17(16):5230-5237.
[23] 伍玲. 番木瓜SGT1和RAR1的功能验证及WRKY转录因子的研究. 武汉:华中农业大学, 2013.
[24] 王萍. 棉花中一个新的Parvulin类型肽酰脯氨酰顺反异构酶的功能分析. 泰安:山东农业大学, 2012.
[25] Richter K, Walter S, Buchner J. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. Journal of Molecular Biology, 2004, 342(5):1403-1413.
pmid: 15364569
[26] Zhang Z, Zhang S, Zhang Y, et al. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. The Plant Cell, 2011, 23(1):396-411.
doi: 10.1105/tpc.110.081356
[27] Zhang J, Clatterbuck R E, Rigamonti D, et al. Interaction between krit1 and icap1α infers perturbation of integrin β1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Human Molecular Genetics, 2001, 10(25):2953-2960.
pmid: 11741838
[28] 吴利民. 拟南芥和水稻锚蛋白(ANKP)基因家族初步研究. 长沙:湖南师范大学, 2006.
[1] 刘威, 周剑雄, 谢媛圆, 张旭, 熊又升, 徐祥玉, 袁家富, 熊汉锋. 氮肥一次性基施对夏播鲜食甜玉米产量、品质和氮素利用效率的影响[J]. 作物杂志, 2021, (5): 134–139
[2] 张艳茹, 杨子和, 杨荣, 韩建, 焦金龙, 赵丽, 吴元奇. 对热带玉米种质群体控制双亲混合选择适应性的评价[J]. 作物杂志, 2021, (5): 14–19
[3] 裴志超, 周继华, 徐向东, 兰宏亮, 王俊英, 郎书文, 张伟强. 干旱处理对不同玉米品种叶片光合速率和抗氧化特性及产量的影响[J]. 作物杂志, 2021, (5): 95–100
[4] 王庆彬, 聂振田, 卢洁春, 彭春娥, 张民, 孟慧, 刘治国, 耿全政. 宛氏拟青霉提取物对夏玉米产量及氮素利用的影响[J]. 作物杂志, 2021, (4): 166–171
[5] 冯艳飞, 杨威, 任国鑫, 邓杰, 李文龙, 高树仁. 黑龙江省部分玉米杂交种的综合评价[J]. 作物杂志, 2021, (4): 46–50
[6] 陶志强, 闫鹏, 张学鹏. 不同年代玉米品种灌浆期的光合特征对高温适应性的初步研究[J]. 作物杂志, 2021, (4): 73–79
[7] 刘天昊, 张翼飞, 王怀鹏, 杨克军, 张津松, 孙逸珊, 肖珊珊, 徐荣琼, 杜嘉瑞, 李佳宇, 彭程, 王宝生. 叶面喷施硅肥对寒地玉米干物质积累分配及产量品质的调控效应[J]. 作物杂志, 2021, (4): 112–117
[8] 梁茜, 吴清山, 葛均筑, 吴锡冬, 杨永安, 侯海鹏, 张垚, 马志琪. 播期对华北平原雨养夏玉米产量形成与资源利用效率的影响[J]. 作物杂志, 2021, (4): 136–143
[9] 高鹏, 郭美俊, 杨雪芳, 董淑琦, 温银元, 郭平毅, 原向阳. 谷子和玉米叶片光合荧光参数对烟嘧磺隆胁迫的响应差异[J]. 作物杂志, 2021, (3): 70–77
[10] 刘剑钊, 袁静超, 梁尧, 贺宇, 张水梅, 史海鹏, 蔡红光, 任军. 玉米秸秆全量深翻还田地力提升技术模式实证及效益分析[J]. 作物杂志, 2021, (2): 135–139
[11] 李忠南, 王越人, 邬生辉, 刘励蔚, 曲海涛, 孙振宇, 李光发. 玉米单倍体自然加倍花粉结实力遗传的初步研究[J]. 作物杂志, 2021, (2): 57–61
[12] 张学鹏, 李腾, 王彪, 刘晴, 刘涵瑜, 陶志强, 隋鹏. 玉米叶片“源”的高温胁迫阈值研究[J]. 作物杂志, 2021, (2): 62–70
[13] 李瑞杰, 闫鹏, 王庆燕, 许艳丽, 卢霖, 董志强, 张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米功能叶光合生理特性和产量的影响[J]. 作物杂志, 2021, (1): 135–142
[14] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响[J]. 作物杂志, 2021, (1): 143–149
[15] 刘艳, 宫亮, 邢月华, 包红静. 基于正交设计的玉米有机无机培肥模式优化研究[J]. 作物杂志, 2021, (1): 168–174
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!