作物杂志,2025, 第3期: 108–115 doi: 10.16035/j.issn.1001-7283.2025.03.015

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同氮肥增效剂对减少豫北麦田气态氮损失及其增产效果研究

贺云霞(), 马建辉, 张黛静, 刘东华, 晁晓燕, 陈慧平, 李春喜()   

  1. 河南师范大学生命科学学院,453007,河南新乡
  • 收稿日期:2024-03-07 修回日期:2024-04-09 出版日期:2025-06-15 发布日期:2025-06-03
  • 通讯作者: 李春喜,主要从事小麦栽培及生理研究,E-mail:wheat_lab@163.com
  • 作者简介:贺云霞,主要从事小麦栽培及生理研究,E-mail:2827639478@qq.com
  • 基金资助:
    “十四五”国家重点研发计划:黄淮海小麦―玉米(大豆)产能提升技术研发及集成示范(2023YFD2301500)

Study on the Effect of Different Nitrogen Fertilizer Synergists on Reducing Gaseous Nitrogen Loss and Increasing Yield in Wheat Field of Northern Henan

He Yunxia(), Ma Jianhui, Zhang Daijing, Liu Donghua, Chao Xiaoyan, Chen Huiping, Li Chunxi()   

  1. College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
  • Received:2024-03-07 Revised:2024-04-09 Online:2025-06-15 Published:2025-06-03

摘要: 为研究氮肥增效剂对豫北麦田气态氮损失及其增产效果的影响,于河南获嘉县进行大田试验,设置9个施氮处理[不施肥+不施增效剂(CK)、减氮20%+不施增效剂(U1)、正常施氮+不施增效剂(U2)、减氮20%+纯氮量的1%脲酶抑制剂(NBPT)(T1)、减氮20%+纯氮量的1%硝化抑制剂(DMPP)(T2)、减氮20%+1/2NBPT+1/2DMPP(T3)、正常施氮+纯氮量的1%NBPT(T4)、正常施氮+纯氮量的1%DMPP(T5)、正常施氮+1/2NBPT+1/2DMPP(T6)],研究对氮素转化和小麦生长的影响。结果表明,同一施氮水平下产量均表现为T3和T6处理高于其他处理;整个小麦生育期,与U2处理相比,T3和T6土壤NH4+含量分别提高了12.23%~36.10%和0.72%~49.47%,叶面积指数分别提高了7.79%~21.32%和10.08%~49.54%,干物质积累量分别提高了20.32%~35.25%和13.56%~40.43%;分别降低了土壤NO3-含量6.51%~34.56%和5.47%~40.20%、N2O排放通量31.73%~72.53%和24.63%~67.84%,减少了N2O累积排放通量32.89%和26.67%,均提高了氮肥利用效率。综上,减氮20%(192 kg/hm2)配合脲酶抑制剂和硝化抑制剂组合在不降低产量的前提下可显著降低温室气体排放,利于冬小麦绿色高效生产。

关键词: 小麦, 氮肥增效剂, 铵态氮, 硝态氮, 叶面积指数, 干物质积累量, 产量

Abstract:

In order to investigate the effects of nitrogen fertilizer synergists on gaseous nitrogen loss and yield increase in wheat fields of northern Henan, nine nitrogen application measures were set up, including no fertilizer+no synergist (CK), 20% nitrogen reduction+no synergist (U1), normal application of nitrogen+no synergist (U2), 20% nitrogen reduction+1% of pure nitrogen amount of urease inhibitor (NBPT) (T1), 20% nitrogen reduction+1% of pure nitrogen amount of nitrification inhibitor (DMPP) (T2), 20% nitrogen reduction+1/2NBPT+1/2DMPP (T3), normal application of nitrogen+1% of pure nitrogen amount of NBPT (T4), normal application of nitrogen+1% of pure nitrogen amount of DMPP (T5), and normal application of nitrogen+1/2NBPT+1/2DMPP (T6). The results showed that the yields at the same N application level were all higher in the T3 and T6 treatments than those in the other treatments; during the wheat growth period, compared with the U2 treatment, T3 and T6 increased the soil NH4+ content by 12.23%-36.10% and 0.72%-49.47%, the leaf area index by 7.79%-21.32% and 10.08%-49.54%, and the dry matter accumulation by 20.32%-35.25% and 13.56%-40.43%; reduced soil NO3- contents 6.51%-34.56% and 5.47%-40.20%, N2O discharge flux 31.73%- 72.53% and 24.63%-67.84%, and reduced cumulative N2O discharge flux 32.89% and 26.67%, all improved the efficiency of N fertilizer utilization. Therefore, the combination of 20% nitrogen reduction with urease inhibitor and nitrification inhibitor can significantly reduce greenhouse gas emissions without reducing yield, which is conducive to the green and efficient production of winter wheat.

Key words: Wheat, Nitrogen fertilizer synergists, Ammonium nitrogen, Nitrate nitrogen, Leaf area index, Dry matter accumulation, Yield

表1

不同处理施肥方案

处理Treatment 肥料Fertilizer N P2O5 K2O NBPT DMPP
CK 不施肥、不施增效剂 0 0 0 0 0
U1 减氮20%、不施增效剂 192 150 90 0 0
U2 正常施氮、不施增效剂 240 150 90 0 0
T1 减氮20%、纯氮量的1% NBPT 192 150 90 2.4 0
T2 减氮20%、纯氮量的1% DMPP 192 150 90 0 2.4
T3 减氮20%、1/2 NBPT+1/2 DMPP 192 150 90 1.2 1.2
T4 正常施氮、纯氮量的1% NBPT 240 150 90 2.4 0
T5 正常施氮、纯氮量的1% DMPP 240 150 90 0 2.4
T6 正常施氮、1/2 NBPT+1/2 DMPP 240 150 90 1.2 1.2

图1

不同氮肥增效剂对小麦LAI的影响 不同小写字母表示P < 0.05水平差异显著,下同。

图2

不同氮肥增效剂对小麦干物质积累量的影响

图3

不同氮肥增效剂对土壤NH4+含量的影响

图4

不同氮肥增效剂对土壤NO3?含量的影响

图5

不同氮肥增效剂对小麦N2O的影响

表2

不同氮肥增效剂对小麦产量及其构成因素的影响

处理Treatment 穗数Spike number (/m2) 穗粒数Grains per spike 千粒重1000-grain weight (g) 产量Yield (kg/hm2)
CK 515.00±9.00f 45.67±7.62ab 34.38±0.11de 7025.68±551.37d
U1 639.00±14.73e 47.33±5.03ab 35.54±0.41bcd 9357.55±211.92c
U2 667.67±6.53cd 47.67±1.53ab 36.63±0.46b 10 140.44±190.63bc
T1 671.00±8.13cd 52.00±4.36a 35.19±0.61cd 10 684.44±377.56bc
T2 655.67±12.34de 49.00±1.73ab 33.55±0.34e 9380.92±523.68c
T3 734.33±12.66ab 51.67±1.53a 35.24±1.24cd 11 645.77±422.98ab
T4 683.33±11.50c 45.67±1.15ab 38.04±0.66a 10 324.85±263.74bc
T5 718.00±18.33b 43.00±2.65b 37.99±0.97a 10 208.97±236.57bc
T6 743.33±6.03a 52.33±3.06a 36.19±0.78bc 12 303.94±378.05a

表3

不同氮肥增效剂对小麦氮素利用效率的影响

处理
Treatment
氮素偏生产力
NPFP (kg/kg)
氮肥农学效率
NAE (kg/kg)
氮素收获指数
NHI (%)
CK 61.64±1.63c
U1 48.74±0.59cd 12.15±1.15b 64.30±0.19bc
U2 42.25±0.79d 10.60±0.03b 64.64±0.68bc
T1 55.65±0.09ab 19.06±0.40a 69.07±0.20a
T2 48.86±0.72cd 12.27±0.14b 63.38±0.95c
T3 60.66±0.80a 24.06±1.02a 64.40±0.59bc
T4 43.02±1.10d 11.37±0.37b 65.10±0.99bc
T5 42.54±0.49d 10.89±0.94b 61.34±0.59c
T6 51.27±0.58bc 19.62±0.51a 67.98±0.70ab
[1] Zhang L, Wei Z B, Wang L L, et al. Fate of urea and ammonium sulfate in the plant and soil system as affected by poly-γ-glutamic acid. Journal of Soil Science and Plant Nutrition, 2022, 22(2):2457-2468.
[2] 王则宇. 劳动力结构变化对粮食生产化肥利用效率的影响研究. 武汉:华中农业大学, 2018.
[3] 旷爱萍, 谢凯承. 我国化肥施用量影响因素研究. 北方农业学报, 2022, 50(6):40-49.
doi: 10.12190/j.issn.2096-1197.2022.06.06
[4] Sha Z P, Ma X, Wang J X, et al. Effect of N stabilizers on fertilizer-N fate in the soil-crop system: a meta-analysis. Agriculture,Ecosystems & Environment, 2020,290:106763.
[5] Bodirsky B L, Popp A, Lotze-Campen H, et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 2014, 5(1):3858.
[6] 曾科, 王书伟, 朱文彬, 等. 不同硝化抑制剂对稻季N2O排放、NH3挥发和水稻产量的影响. 土壤, 2023, 55(3):503-511.
[7] 李长青, 纪萌, 马萌萌, 等. 天然增效剂与化学抑制剂复配对小麦/玉米轮作体系产量、氮素利用及氮平衡的影响. 应用生态学报, 2023, 34(9):2391-2397.
doi: 10.13287/j.1001-9332.202309.012
[8] Liu C Y, Wang K, Zheng X H. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system. Biogeosciences, 2013, 10(4):2427-2437.
[9] 阚建鸾, 王晓云, 苏建平, 等. 不同氮肥抑制剂对小麦产量、土壤肥力、氮肥利用率的影响. 中国农学通报, 2023, 39(5):69-74.
doi: 10.11924/j.issn.1000-6850.casb2022-0825
[10] 李莉, 李东坡, 武志杰, 等. 脲酶/硝化抑制剂对尿素氮在白浆土中转化的影响. 植物营养与肥料学报, 2011, 17(3):646-650.
[11] 赵婉伊, 徐卫红, 王崇力, 等. 脲酶―硝化抑制剂缓释肥对不同土壤氮素释放特性及黄瓜NPK吸收利用的影响. 水土保持学报, 2017, 31(3):250-257.
[12] 张文学, 王少先, 夏文建, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤硝化、反硝化功能菌的影响. 植物营养与肥料学报, 2019, 25(6):897-909.
[13] 王静, 王允青, 张凤芝, 等. 脲酶/硝化抑制剂对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响. 水土保持学报, 2019, 33(5):211-216.
[14] 胡林. 植物叶面积系数法改进研究. 中国农学通报, 2015, 31(5):228-233.
doi: 10.11924/j.issn.1000-6850.2014-2300
[15] 张文学, 杨春成, 王少先, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响. 中国水稻科学, 2017, 31(4):417-424.
doi: 10.16819/j.1001-7216.2017.7008 417
[16] Byrnes B H, Freney J R. Recent developments on the use of urease inhibitors in the tropics. Fertilizer Research, 1995,42:251-259.
[17] Wallace A J, Armstrong R D, Grace P R, et al. Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutrient Cycling in Agroecosyst, 2020, 116 (1):41-56.
[18] Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586(7828):248-256.
[19] Liu Q L, Ma J J, Sun X H, et al. Research advancement on soil nitrification-denitrification and its influencing factors. Agricultural Engineering, 2011, 1(4):79-83.
[20] Zhang Y Y, Wang W J, Yao H Y. Urea-based nitrogen fertilization in agriculture: a key source of N2O emissions and recent development in mitigating strategies. Archives of Agronomy and Soil Science, 2023, 69(5):663-678.
[21] Tian X S, Yin Y L, Zhuang M H, et al. Bottom-up estimates of reactive nitrogen loss from Chinese wheat production in 2014. Scientific Data, 2022, 9(1):233.
doi: 10.1038/s41597-022-01315-4 pmid: 35614078
[22] Wang J X, Sha Z P, Zhang J R, et al. Improving nitrogen fertilizer use efficiency and minimizing losses and global warming potential by optimizing applications and using nitrogen synergists in a maize-wheat rotation. Agriculture,Ecosystems & Environment, 2023,353:108538.
[23] Wang H Y, Zhang D F, Zhang Y T, et al. Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution, 2018,235:482-488.
[24] 伊英杰, 韩坤, 赵斌, 等. 长期不同施肥措施冬小麦―夏玉米轮作体系周年氨挥发损失的差异. 中国农业科学, 2022, 55 (23):4600-4613.
doi: 10.3864/j.issn.0578-1752.2022.23.003
[25] Cantarella H, Otto R, Soares J R, et al. Agronomic efficiency of NBPT as a urease inhibitor: a review. Journal of Advanced Research, 2018,13:19-27.
[26] He T H, Liu D Y, Yuan J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agriculture,Ecosystems & Environment, 2018,264:44-53.
[27] 刘世腾, 刘春丽, 李开春, 等. 氮肥增效剂对石灰性潮土氨挥发及冬小麦产量的影响. 中国土壤与肥料, 2023(3):1-6.
[28] 倪秀菊. 几种抑制剂对尿素水解和土壤硝化作用的影响. 北京: 中国农业科学院, 2010.
[29] 郭海, 杨鹏金, 李录久, 等. 氮肥基追比例运筹方式对水稻生长和肥料利用效率的影响. 现代农业科技, 2015(20):20,27.
[30] 任寒, 朱国梁, 董浩, 等. 减施配方控释肥调控土壤理化性状与稳定夏玉米产量. 土壤通报, 2022, 53(6):1440-1446.
[31] 郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响. 水土保持学报, 2019, 33(4):221-227.
[32] 李欢, 李扬, 杨清夏, 等. 缓释尿素一次性施用在玉米减氮增效中的作用. 南方农业学报, 2021, 52(4):967-975.
[33] Liang H Y, Shen P F, Kong X Z, et al. Optimal nitrogen practice in winter wheat-summer maize rotation affecting the fates of 15N-labeled fertilizer. Agronomy, 2020, 10(4):521.
[34] Zheng J, Fan J L, Zhang F C, et al. Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China. Agricultural Water Management, 2021,248:106778.
[1] 王佳童, 马映辰, 冯燕飞, 路佳慧, 郭振清, 李学利, 李云, 韩玉翠, 林小虎. 减量追氮对冀东地区春小麦磷、钾肥利用及品质的影响[J]. 作物杂志, 2025, (3): 141–148
[2] 王祎, 任永福, 张正鹏, 丁德芳, 张靖, 刘祎鸿, 孙多鑫, 陈光荣. 不同覆盖材料对河西灌区土壤环境及玉米产量的影响[J]. 作物杂志, 2025, (3): 149–155
[3] 李家豪, 贾永红, 连世昊, 刘跃, 于姗, 田文强, 王子骞, 张金汕, 石书兵. 调环酸钙和施磷量对冬小麦生长、干物质积累及产量的影响[J]. 作物杂志, 2025, (3): 165–171
[4] 曹正男, 赵振东, 胡博, 于涵, 宁晓海, 赵泽强, 曹立勇. 氮肥与促腐菌肥配施对寒地水稻秸秆还田腐解效果及产量的影响[J]. 作物杂志, 2025, (3): 172–177
[5] 侯楠, 吴凤婕, 齐翔鲲, 王玉凤, 杨克军, 付健. 不同施氮水平对黑土区糯玉米灌浆期碳代谢的影响[J]. 作物杂志, 2025, (3): 178–184
[6] 朱金籴, 朱学刚, 杜文青, 邱拓宇, 赵新彬. 化肥减量配施有机肥对设施番茄光合特性、品质和产量的影响[J]. 作物杂志, 2025, (3): 185–189
[7] 李虎, 黄秋要, 吴子帅, 刘广林, 陈传华, 罗群昌, 朱其南. 种植密度和施氮量对优质常规稻桂育12产量和米质的影响[J]. 作物杂志, 2025, (3): 195–201
[8] 兰秀, 李恒锐, 何洪良, 马仙花, 黄小娟, 李天元, 韦海球, 江清梅, 阮丽霞, 杨海霞, 刘炳继, 汤丹峰. 甘蔗/凉粉草间作对作物产量、品质及经济效益的影响[J]. 作物杂志, 2025, (3): 202–209
[9] 韦梦洋, 罗贞宝, 贺帅, 马黔, 马关凯, 席飞虎, 罗东升, 景延秋, 喻奇伟, 王茂贤. 光合细菌与留叶数互作对烤烟生理代谢、化学品质及产量和质量的影响[J]. 作物杂志, 2025, (3): 210–217
[10] 杨泽鹏, 万柯均, 郑盛华, 敖玉琴, 马明坤, 万学, 李珊珊, 宋昕, 王昌桃, 陈尚洪, 刘定辉, 陈红琳. 氮肥和播种量配置对无人机飞播油菜产量形成的影响[J]. 作物杂志, 2025, (3): 225–232
[11] 梁辉, 章建新, 薛丽华, 贾珂珂. 水氮后移条件下滴灌量对新农豆2号根系生长及产量的影响[J]. 作物杂志, 2025, (3): 233–240
[12] 樊明, 李红霞, 王轲, 唐华丽, 杨乐, 李前荣, 叶兴国, 张双喜. 抗白粉病小麦新品种宁春66号选育及栽培技术[J]. 作物杂志, 2025, (3): 249–254
[13] 黄明, 付鑫鑫, 张振旺, 张军, 李友军. 种子大小对旱地小麦种子萌发、幼苗特性和抗旱性的影响[J]. 作物杂志, 2025, (3): 255–262
[14] 王贺亚, 罗静静, 孟玲, 艾海峰, 王斌, 李怀胜, 徐靖鹏, 徐向阳. 塔额盆地食用向日葵品种产量敏感性分析[J]. 作物杂志, 2025, (3): 30–37
[15] 毛顺鑫, 肖无为, 张作林, 黄家达, 王飞, 黄见良, 彭少兵, 崔克辉. 不同灌溉模式和肥料处理对再生稻再生芽生长和再生季产量形成的影响[J]. 作物杂志, 2025, (3): 92–101
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!