Crops ›› 2016, Vol. 32 ›› Issue (6): 9-15.doi: 10.16035/j.issn.1001-7283.2016.06.002

Previous Articles     Next Articles

Role and Expression Regulation of Phytocystatin in Plant Resistance to Diseases and Pests

Yu Yongting,Gao Chunsheng,Li Zhimin,Zeng Liangbin,Chen Jia,Zhu Aiguo,Zhu Taotao,Sun Kai,Yan Zhun   

  1. Institute of Bast Fiber Crops,Chinese Academy of Agricultural Sciences,Changsha 410205,Hunan,China
  • Received:2016-08-19 Revised:2016-11-01 Online:2016-12-15 Published:2018-08-26

Abstract:

Plant cysteine proteinase inhibitor, also called phytocystatin, plays a critical role in plant resistance to bioticstress, such as nematode, herbivore and fungi, etc. It can impair their growth and reproduction by directly inhibiting the activity of cysteine proteinase, an important digestive enzyme of nematode or herbivore when they infect plant. However, the impairing function of phytocystatin to some phytopathogenic fungi does not depend on its cysteine proteinase inhibiting activity and its underlying mechanism is still unclear. When plant suffered to biotic stress, expression of phytocystatin is regulated by various genes and is closely related to JA signaling. However, regulation network of phytocystatin expression is unclear and need more studies to reveal. This review summarizes the recent studies highlighting the role and application of phytocystatin in plant resistance to nematode and herbivore, and analyzes the expression regulation mechanism of phytocystatin. In addition, we forecast the research tendency and application prospect of this protein.

Key words: Phytocystatin, Antifungal mechanism, Expression regulation, Disease-resistant, Pest-resistant

Fig.1

Distribution of the conserved sequences of PhytoCys on peptide chain"

Table 1

Some PhytoCys and its antifungal spectrum"

植物Species 蛋白名称Protein name 测试病原真菌Pathogen tested 参考文献Reference
板栗Chestnut CSC 禾生炭疽菌(Colletotrichum graminicola) [21]
灰葡萄孢(Botrytis cinerea)
颖枯壳针孢(Septoria nodorum)
甘蔗Sugarcane Canecystatin 里氏木霉(Trichoderma reesei) [22]
芋头Taro CeCPI 齐整小核菌(Sclerotium rolfsii) [18]
立枯丝核菌(Rhizoctonia solani)
芸薹链格孢(Alternaria brassicae)
围小丛壳菌(Glomerella cingulata)
瓜果腐霉(Pythium aphanidermatum)
尖孢镰孢(Fusarium oxysporum)
小麦Wheat TaMDC1 雪霉微座孢(Microdochium nivale) [23]
大麦Barley Hv-CPI 灰葡萄孢(Botrytis cinerea) [24]
禾生刺盘孢(Colletotrichum graminicola)
黄瓜织球壳菌(Plectosphaerella cucumerina)
绿色木霉(Trichoderma viride)
HvCPI-2 灰葡萄孢(Botrytis cinerea) [25]
HvCPI-3 尖孢镰刀菌(Fusarium oxysporum)
草莓Strawberry FaCPI-1 灰葡萄孢(Botrytis cinerea) [26]
尖孢镰刀菌(Fusarium oxysporum)
苋菜Amaranth AhCPI 立枯丝核菌(Rhizoctonia solani) [19]
尖孢镰刀菌(Fusarium oxysporum)
白腐小核菌(Sclerotium cepivorum)
猕猴桃Kiwifruit KCPIs 灰葡萄孢(Botrytis cinerea) [27]
根状链格孢(Alternaria radicina)
暹罗郁金香Siam tulip CaCPI 尖孢镰刀菌(Fusarium oxysporum) [28]
灰梨孢(Pyricularia grisea)
辣椒刺盘孢(Colletotrichum capsici)
可可Cacao TcCys1,TcCys2,TcCys3,TcCys4 可可丛枝病菌(Moniliophthora perniciosa) [20]
芝麻Sesame SiCYS 里氏木霉(Trichoderma reesei) [29]
萨氏曲霉(Aspergillus sydowii)
芝麻长蠕孢(Helminthosporium sesamum)
[1] van Loon L C, Rep M, Pieterse C M . Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006,44:135-162.
doi: 10.1146/annurev.phyto.44.070505.143425
[2] Sels J, Mathys J, De Coninck B M ,et al.Plant pathogenesis-related (PR) proteins:a focus on PR peptides. Plant Physiology and Biochemistry, 2008,46:941-950.
doi: 10.1016/j.plaphy.2008.06.011 pmid: 18674922
[3] Heitz T, Geoffroy P, Fritig B . The PR-6 family:proteinase inhibitors in plant-microbe and plant-insect interactions//Datta S K,Muthukrishan S.Pathogenesis-related in Proteins Plants, 1999: 131-155.
[4] Lima A M, dos Reis S P, de Souza C R B . Phytocystatins and their potential to control plant diseases caused by fungi. Protein Peptide Letters, 2015,22:104-111.
doi: 10.2174/0929866521666140418101711
[5] Rivard D, Girard C, Anguenot R , et al. MsCYS1,a developmentally-regulated cystatin from alfalfa. Plant Physiology and Biochemistry, 2007,45:508-514.
doi: 10.1016/j.plaphy.2007.03.028 pmid: 17507234
[6] Belenghi B, Acconcia F, Trovato M , et al. AtCYS1,a cystatin from Arabidopsis thaliana,suppresses hypersensitive cell death. European Journal of Biochemistry, 2003,270:2593-2604.
doi: 10.1046/j.1432-1033.2003.03630.x
[7] Diaz-Mendoza M, Velasco-Arroyo B, Gonzalez-Melendi P , et al. C1A cysteine protease-cystatin interactions in leaf senescence. Journal of Experimental Botany, 2014,65:3825-3833.
doi: 10.1093/jxb/eru043 pmid: 24600023
[8] Kuroda M, Kiyosaki T, Matsumoto I , et al. Molecular cloning,characterization,and expression of wheat cystatins.Bioscience,Biotechnology, and Biochemistry, 2001,65:22-28.
[9] Shyu D J, Chou W M, Yiu T J , et al. Cloning,functional expression,and characterization of cystatin in sesame seed. Journal of Agricultural and Food Chemistry, 2004,52:1350-1356.
doi: 10.1021/jf034989v pmid: 14995145
[10] Martinez M, Cambra I, Carrillo L , et al. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases,partners in the hordein mobilization during seed germination. Plant Physiology, 2009,151:1531-1545.
doi: 10.1104/pp.109.146019
[11] Benchabane M, Schluter U, Vorster J , et al. Plant cystatins. Biochimie, 2010,92:1657-1666.
doi: 10.1016/j.biochi.2010.06.006
[12] Zhang X, Liu S, Takano T . Two cysteine proteinase inhibitors from Arabidopsis thaliana,AtCYSa and AtCYSb,increasing the salt,drought,oxidation and cold tolerance. Plant Molecular Biology, 2008,68:131-143.
doi: 10.1007/s11103-008-9357-x
[13] Quain M D, Makgopa M E, Marquez-Garcia B , et al. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnology Journal, 2014,12:903-913.
doi: 10.1111/pbi.2014.12.issue-7
[14] Kunert K J, van Wyk S G, Cullis C A , et al. Potential use of phytocystatins in crop improvement,with a particular focus on legumes. Journal of Experimental Botany, 2015,66:3559-3570.
doi: 10.1093/jxb/erv211 pmid: 25944929
[15] Martinez M, Abraham Z, Carbonero P , et al. Comparative phylogenetic analysis of cystatin gene families from arabidopsis,rice and barley. Molecular Genetics & Genomics, 2005,273:423-432.
doi: 10.1007/s00438-005-1147-4 pmid: 15887031
[16] Bangrak P, Chotigeat W . Molecular cloning and biochemical characterization of a novel cystatin from Hevea rubber latex. Plant Physiology and Biochemistry, 2011,49:244-250.
doi: 10.1016/j.plaphy.2010.12.007 pmid: 21247772
[17] Kumar D, Kirti P B . Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen,Phaeoisariopsis personata. PloS One, 2015,10:e0117559.
doi: 10.1371/journal.pone.0117559
[18] Yang A H, Yeh K W . Molecular cloning,recombinant gene expression,and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no.1). Planta, 2005,221:493-501.
doi: 10.1007/s00425-004-1462-8
[19] Valdes-Rodriguez S, Cedro-Tanda A, Aguilar-Hernandez V , et al. Recombinant amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic fungi. Plant Physiology and Biochemistry, 2010,48:469-475.
doi: 10.1016/j.plaphy.2010.03.012 pmid: 20403704
[20] Pirovani C P, da Silva Santiago A, dos Santos L S , et al. Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms. Planta, 2010,232:1485-1497.
doi: 10.1007/s00425-010-1272-0
[21] Pernas M, López-Solanilla E, Sánchez-Monge R , et al. Antifungal activity of a plant cystatin. Molecular Plant-Microbe Interactions, 1999,12(7):624-627.
doi: 10.1094/MPMI.1999.12.7.624
[22] Soares-Costa A, Beltramini L M, Thiemann O H , et al. A sugarcane cystatin:recombinant expression,purification,and antifungal activity. Biochemical and Biophysical Research Communications, 2002,296(5):1194-1199.
doi: 10.1016/S0006-291X(02)02046-6 pmid: 12207900
[23] Christova P K, Christov N K, Imai R . A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus,Microdochium nivale. Planta, 2006,223(6):1207-1218.
doi: 10.1007/s00425-005-0169-9
[24] Martinez M, Lopez-Solanilla E, Rodriguez-Palenzuela P , et al. Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties.Molecular Plant-Microbe Interactions, 2003,16(10):876-883.
[25] Abraham Z, Martinez M, Carbonero P , et al. Structural and functional diversity within the cystatin gene family of Hordeum vulgare. Journal of Experimental Botany, 2006,57(15):4245-4255.
doi: 10.1093/jxb/erl200 pmid: 17099080
[26] Martinez M, Abraham Z, Gambardella M , et al. The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. Journal of Experimental Botany, 2005,56(417):1821-1829.
doi: 10.1093/jxb/eri172 pmid: 15897228
[27] Popovic M, Andjelkovic U, Burazer L , et al. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa). Phytochemistry, 2013,94:53-59.
doi: 10.1016/j.phytochem.2013.06.006
[28] Porruana R, Chundetb R, Anuntalabhochaia S . Characterization of a cDNA encoding cystatin with antifungal activity from Siam tulip Curcuma alismatifolia. Science Asia, 2013,39:596-604.
doi: 10.2306/scienceasia1513-1874.2013.39.596
[29] Cheng M L, Tzen J T C, Shyu D J H , et al.Functional characterization of the N-terminal and C-terminal domains of a sesame group II phytocystatin. Botanical Studies, 2014,55(1):1-10.
doi: 10.1186/1999-3110-55-1
[30] Sajid M, McKerrow J H . Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology, 2002,120:1-21.
doi: 10.1016/S0166-6851(01)00438-8
[31] Shingles J, Lilley C J, Atkinson H J , et al. Meloidogyne incognita:molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Experimental Parasitology, 2007,115:114-120.
doi: 10.1016/j.exppara.2006.07.008
[32] 吕春花, 肖罗, 茆振川 , 等. 相似穿孔线虫 S 型半胱氨酸蛋白酶基因克隆与序列分析. 植物保护, 2008,34:17-22.
[33] Urwin P E, Levesley A, McPherson M J , et al. Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Molecular Breeding, 2000,6:257-264.
doi: 10.1023/A:1009669325944
[34] Samac D A, Smigocki A C . Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode. Phytopathology, 2003,93:799-804.
doi: 10.1094/PHYTO.2003.93.7.799
[35] Gao S, Yu B, Zhai H , et al. Enhanced stem nematode resistance of transgenic sweetpotato plants expressing oryzacystatin-I gene. Agricultural Sciences in China, 2011,10:519-525.
doi: 10.1016/S1671-2927(11)60032-1
[36] Tripathi L, Babirye A, Roderick H , et al. Field resistance of transgenic plantain to nematodes has potential for future African food security. Scientific Reports, 2015,5:8127.
doi: 10.1038/srep08127
[37] Vieira P, Wantoch S, Lilley C J , et al. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv.‘Nellie White’. Transgenic Research, 2015,24:421-432.
doi: 10.1007/s11248-014-9848-2
[38] Chan Y L, Yang A H, Chen J T , et al. Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Reports, 2010,29:231-238.
doi: 10.1007/s00299-009-0815-y
[39] Roderick H, Tripathi L, Babirye A , et al. Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Molecular Plant Pathology, 2013,13:842-851.
doi: 10.1111/j.1364-3703.2012.00792.x pmid: 22435592
[40] Bakhetia M, Charlton W L, Urwin P E , et al. RNA interference and plant parasitic nematodes. Trends in Plant Science, 2005,10:362-367.
doi: 10.1016/j.tplants.2005.06.007 pmid: 16027029
[41] Oppert B, Morgan T D, Hartzer K , et al. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle,Tribolium castaneum (Herbst)(Coleoptera:Tenebrionidae).Comparative Biochemistry and Physiology-Part C:Toxicology & Pharmacology, 2003,134:481-490.
[42] Aguiar J M, Franco O L, Rigden D J , et al. Molecular modeling and inhibitory activity of cowpea cystatin against bean bruchid pests.Proteins:Structure,Function, and Bioinformatics, 2006,63:662-670.
doi: 10.1002/prot.20901 pmid: 16470583
[43] Kiggundu A, Muchwezi J, Van der Vyver C , et al.Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus. Archives of Insect Biochemistry and Physiology, 2010,73:87-105.
doi: 10.1002/arch.20342 pmid: 20035549
[44] Rahbé Y, Deraison C, Bonadé-Bottino M , et al. Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Science, 2003,164:441-450.
doi: 10.1016/S0168-9452(02)00402-8
[45] Ninković S, Miljuš-Đukić J, Radović S , et al.Phytodecta fornicata Brüggemann resistance mediated by oryzacystatin II proteinase inhibitor transgene.Plant Cell, Tissue and Organ Culture, 2007,91:289-294.
doi: 10.1007/s11240-007-9296-2
[46] Cingel A, Savic J, Vinterhalter B , et al. Growth and development of Colorado potato beetle larvae,Leptinotarsa decemlineata,on potato plants expressing the oryzacystatin II proteinase inhibitor. Transgenic Research, 2015,24:729-740.
doi: 10.1007/s11248-015-9873-9
[47] Carrillo L, Martinez M, Alvarez-Alfageme F , et al. A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic arabidopsis plants. Transgenic Research, 2011,20:305-319.
doi: 10.1007/s11248-010-9417-2
[48] Alvarez-Alfageme F, Martinez M, Pascual-Ruiz S , et al. Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Research, 2007,16:1-13.
doi: 10.1007/s11248-006-9022-6
[49] Carrillo L, Martinez M, Ramessar K , et al. Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Reports, 2011,30:101-112.
doi: 10.1007/s00299-010-0948-z
[50] Orr G L, Strickland J A, Walsh T A . Inhibition of diabrotica larval growth by a multicystatin from potato tubers. Journal of Insect Physiology, 1994,40:893-900.
doi: 10.1016/0022-1910(94)90023-X
[51] Bown D P, Wilkinson H S, Jongsma M A , et al. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Insect Biochemistry and Molecular Biology, 2004,34:305-320.
doi: 10.1016/j.ibmb.2003.11.005
[52] Koiwa H, Shade R E, Zhu-Salzman K , et al. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera). FEBS Letters, 2000,471:67-70.
doi: 10.1016/S0014-5793(00)01368-5
[53] Cipriani G, Fuentes S, Bello V , et al. Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus//CIP program report 1999-2000, International Potato Center, 2001: 267-271.
[54] Gutierrez-Campos R, Torres-Acosta J A, Saucedo-Arias L J , et al.The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotechnology, 1999,17:1223-1226.
doi: 10.1038/70781
[55] Popovic M, Andjelkovic U, Grozdanovic M , et al. In vitro antibacterial activity of cysteine protease inhibitor from kiwifruit (Actinidia deliciosa). Indian Journal of Microbiology, 2013,53(1):100-105.
doi: 10.1007/s12088-012-0319-2
[56] Senthilkumar R, Cheng C P, Yeh K W . Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnology Journal, 2014,8:65-75.
doi: 10.1007/s11816-013-0298-8
[57] Carrillo L, Herrero I, Cambra I , et al. Differential in vitro and in vivo effect of barley cysteine and serine protease inhibitors on phytopathogenic microorganisms. Plant Physiology and Biochemistry, 2011,49:1191-1200.
doi: 10.1016/j.plaphy.2011.03.012
[58] Li R, Rashotte A M, Singh N K , et al. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes:a perspective. Plant Cell Reports, 2015,34:5-22.
doi: 10.1007/s00299-014-1676-6
[59] Fujimoto T, Tomitaka Y, Abe H , et al. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. Journal of Plant Physiology, 2011,168:1084-1097.
doi: 10.1016/j.jplph.2010.12.002
[60] Dutt S, Pandey D, Kumar A . Jasmonate signal induced expression of cystatin genes for providing resistance against Karnal bunt in wheat. Plant Signaling and Behavior, 2011,6:821-830.
doi: 10.4161/psb.6.6.14743
[61] Dutt S, Gaur V S, Taj G , et al. Differential induction of two different cystatin genes during pathogenesis of karnal bunt (Tilletia indica) in wheat under the influence of jasmonic acid. Gene, 2012,506:253-260.
doi: 10.1016/j.gene.2012.06.028
[62] Martinez M, Rubio-Somoza I, Fuentes R , et al. The barley cystatin gene (Icy) is regulated by DOF transcription factors in aleurone cells upon germination. Journal of Experimental Botany, 2005,56:547-556.
doi: 10.1093/jxb/eri033
[63] Keyster M, Adams R, Klein A , et al. Nitric oxide (NO) regulates the expression of single-domain cystatins in Glycine max (soybean). Plant Omics, 2013,6:183-192.
doi: 10.1111/nph.12179
[64] Jacobs A F A . Identification of regulatory elements mediating responses of SOD and cystatin transcripts to salt stress and nitric oxide in soybean nodules. Stellenbosch:Stellenbosch University, 2012.
[65] Girard C, Rivard D, Kiggundu A , et al. A multicomponent,elicitor-inducible cystatin complex in tomato,Solanum lycopersicum. The New Phytolists, 2007,173:841-851.
doi: 10.1111/j.1469-8137.2007.01968.x pmid: 17286832
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .