Crops ›› 2017, Vol. 33 ›› Issue (2): 114-120.doi: 10.16035/j.issn.1001-7283.2017.02.020

Previous Articles     Next Articles

The Responses of the Ecophysiological Characteristics of Amaranthus retroflexus and Glycine max to Seasonal Rainfall Fluctuations

Lu Ping1,Jin Chenggong1,Zhang Xi2,Jiang Baiwen1,Yan Nannan2,Xiao Tongyu1,Bai Yamei1,Li Jingxin2,Chen Rui1,Li Jing1   

  1. 1 School of Resources and Environmental Sciences,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
    2 College of Animal Science and Technology,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
  • Received:2016-10-08 Revised:2017-01-10 Online:2017-04-15 Published:2018-08-26
  • Contact: Baiwen Jiang

Abstract:

An invasive weed Amaranthus retroflexus and a crop Glycine max were chosen as materials in the greenhouse potted experiment. The specific leaf area (SLA), malondialdehyde (MDA) content, proline content and soluble protein content in leaves of the two species response to the seasonal rainfall fluctuations were studied based on the method of simulating different seasonal rainfall fluctuations. The results showed that both species decreased leaf area to reduce evaporation, while proline and soluble protein contents in leaves of A. retroflexus were higher than those of G. Max under dry and lack of rain conditions, which illustrated that even in the fast growing season under the condition of water shortage, the level of membrane lipid peroxidation of leaves of A. retroflexuswas less than that of G. max, and A. retroflexus could recover quickly. On the seeding stage, the MDA content in leaves of A. retroflexus was higher than that of G. max in mixed cropping, which indicated that A. retroflexus was under severe water stress. But on the flowering stage of G. max, the proline and soluble protein content of A. retroflexus were higher than those of G. max in mixed cropping and the level of membrane lipid peroxidation of A. retroflexus was less than that of G. max, which indicated that A. retroflexus was less affected by water stress than G. max. Therefore, A. retroflexus can adjust morphological character and physiological substance contents to adapt different seasonal rainfall fluctuations in the process of invading agro-ecosystem. It may be one of the important reasons of A. retroflexus can widely distributed in farmland.

Key words: Amaranthus retroflexus, Glycine max, Seasonal rainfall fluctuation, Ecophysiological characteristics

Fig.1

The distribution of simulative rainfall amount in the four seasonal precipitation patterns Central peak, the precipitation peak appeared in the central period of the growing season; Double peak, the precipitation peak appeared in the early and later periods of the growing season; Early peak, the precipitation peak appeared in the early period of the growing season; Late peak, the precipitation peak appeared in the late period of the growing season."

Fig.2

Specific leaf area (SLA) of A. retroflexus and G. max in pure culture (pure) or mixture (mix) in the different growing periods The data in the figure are the mean ±SE of 4 times; different capital letters indicate the significant of the same date but different rainfall pattern; different small letters indicate the significant of the same rainfall pattern but different date (P<0.05), the same below"

Fig.3

Leaf malondialdehyde (MDA) content of A. retroflexus and G. max in pure culture (pure) or mixture (mix) in the different growing periods"

Fig.4

Leaf proline content of A. retroflexus and G. max in pure culture (pure) or mixture (mix) in the different growing periods"

Fig.5

Leaf soluble protein content of A. retroflexus and G. max in pure culture (pure) or mixture (mix) in the different growing periods"

[1] Stocker T F D, Qin G K, Plattner M , et al. Climate Change 2013: The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA, 2013.
[2] Solomon S, Qin D, Manning M , et al. Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA, 2007.
[3] Kunkel K E , Pielke J R A,Changnon S A.Temporal fluctuations in weather and climate extremes that cause economic and human health impacts:a review. Bulletin of the American Meteorolgical Society, 1999,80(6):1077-1098.
doi: 10.1175/1520-0477(1999)080&lt;1077:TFIWAC&gt;2.0.CO;2
[4] Wang H, Sun J, Chen H , et al. Extreme climate in China:facts,simulation and projection. Meteorologische Zeitschrift, 2012,21(3):279-304.
doi: 10.1127/0941-2948/2012/0330
[5] 强生才, 张恒嘉, 莫非 , 等. 微集雨模式与降雨变律对燕麦大田水生态过程的影响. 生态学报, 2011,31(9):2365-2373.
[6] 赵鸿, 肖国举, 王润元 , 等. 气候变化对半干旱雨养农业区春小麦生长的影响. 地球科学进展, 2007,22(3):93-98.
doi: 10.3321/j.issn:1001-8166.2007.03.013
[7] 徐海根, 强胜, 韩正敏 , 等. 中国外来入侵物种的分布与传入路径分析. 生物多样性, 2004,12(6):626-638.
[8] 强胜, 曹学章 . 中国异域杂草考察与分析. 植物资源与环境学报, 2000,9(4):31-38.
[9] Montserrat V, Williamson M, Lonsdale M . Competition experiments on alien weeds with crops:lessons for measuring plant invasion impact? Biological Invasions, 2004,6:59-69.
doi: 10.1023/B:BINV.0000010122.77024.8a
[10] 张茜, 金成功, 李景欣 , 等. 降雨季节波动对反枝苋与大豆光合色素的影响.作物杂志, 2016(1):154-161.
doi: 10.16035/j.issn.1001-7283.2016.01.029
[11] 国家环境保护部和中国科学院.中国外来入侵物种名单( 第三批), 2014.
[12] 鲁萍, 梁慧, 王宏燕 , 等. 外来入侵杂草反枝苋的研究进展. 生态学杂志, 2010,29(8):1662-1670.
[13] Clements D R , DiTommaso A,Jordan N,et al.Adaptability of plants invading North American cropland agriculture. Ecosystems Environment, 2004,104:379-398.
doi: 10.1016/j.agee.2004.03.003
[14] 王俊峰, 冯玉龙, 梁红柱 . 紫茎泽兰光合特性对生长环境光强的适应. 应用生态学报, 2004,15(8):1373-1377.
[15] 郭水良, 方芳, 黄华 , 等. 外来入侵植物北美车前繁殖及光合生理生态学研究. 植物生态学报, 2004,28(6):787-793.
[16] 黄华, 郭水良 . 外来植物加拿大一枝黄花生理指标的季节动态及其适应意义. 浙江师范大学学报, 2005,28(2):201-205.
[17] 周文杰, 芦站根, 刘国民 . 外来植物黄顶菊生理指标的季节动态及适应意义.江苏农业科学, 2008(5):105-107.
[18] 徐广惠, 王宏燕, 刘佳 . 抗草甘膦转基因大豆(RRS)对根际土壤细菌数量和多样性的影响. 生态学报, 2009,29(8):4535-4541.
doi: 10.3321/j.issn:1000-0933.2009.08.062
[19] Glimore D W, Seymour R S, Halteman W A , et al. Greenwood,Canopy dynamics and the morphological development of Abies balsamea:effects of foliage age on specific leaf area and secondary vascular development. Tree Physiology, 1995,15:47-55.
doi: 10.1093/treephys/15.1.47
[20] 王满莲, 冯玉龙 . 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应. 植物生态学报, 2005,29(5):697-705.
doi: 10.1017/S0963180100005922
[21] 汤章诚 . 现代植物生理学实验指导.北京: 科学出版社, 1999.
[22] Feng Y L, Fu G L, Zheng Y L . Specific leaf area relates to the differences in leaf construction cost,photosynthesis,nitrogen allocation,and use efficiencies between invasive and noninvasive alien congeners. Planta, 2008,228:383-390.
doi: 10.1007/s00425-008-0732-2
[23] 郭水良, 方芳 . 入侵植物加拿大一枝黄花对环境的生理适应性研究. 植物生态学报, 2003,27(1):47-52.
doi: 10.17521/cjpe.2003.0007
[24] 郭水良, 方芳, 强胜 . 不同温度对七种外来杂草生理指标的影响及其适应意义. 广西植物, 2003,23(1):73-76.
[25] 吴海荣, 强胜 . 南京市秋季外来杂草定量调查研究. 生物多样性, 2003,11(5):432-438.
[26] 董全中, 杨兴勇, 张勇 , 等. 降雨量不足对大豆产量及农艺性状影响的研究.大豆科技, 2006(3):5-8.
[27] Shurtleff J L, Coble H D . The interations of soybean (Glycine max) and five weed species in the greenhouse. Weed Science, 1985,33:669-679.
[28] Légère A, Schreiber M M . Competition and canopy architecture as affected by soybean (Glycine max) row width and density of redroot pigweed (Amaranthus retroflexus). Weed Science, 1989,37:84-92.
[29] Delhaize E, Ryan P R . Aluminum toxicity and tolerance in plants. Plant Physiology, 1995,107:315-321.
doi: 10.1104/pp.107.2.315 pmid: 12228360
[30] 汤章诚 . 逆境条件下植物Pro积累及可能的意义. 植物生理学通讯, 1984,10(1):15-21.
[31] 彭志红, 彭克勤, 胡家金 . 渗透胁迫下植物脯氨酸积累的研究进展. 中国农学通报, 2002,18(4):80-83.
[32] 褚建民, 邓东周, 王琼 , 等. 降雨量变化对樟子松生理生态特性的影响. 生态学杂志, 2011,30(12):2672-2678.
[33] 梁慧, 鲁萍, 吴岩 , 等. 氮素资源波动对反枝苋与大豆硝酸还原酶活性的影响.作物杂志, 2012(3):39-43.
[34] 田秋阳, 周鸿章, 鲁萍 , 等. 外来杂草反枝苋对大豆根际土壤微生物碳源利用和土壤理化性质的影响.作物杂志, 2012(2):24-30.
doi: 10.3969/j.issn.1001-7283.2012.02.006
[35] Lu P, Li J X, Jin C G , et al. Different growth responses of an invasive weed and a native crop to nitrogen pulse and competition. Plos One, 2016,11(6):e0156285.
doi: 10.1371/journal.pone.0156285
[1] Xiang Bai,Li Ta,Meiwei Zhao,Chuancai Liu,Guoyin Wei,Lituo Cui,Guangjuan Zeng,Jin Qin. New Research Progress on Alien Invasive Plant Amaranthus retroflexus L. from 2010 to 2015 [J]. Crops, 2016, 32(4): 7-14.
[2] Xi Zhang,Chenggong Jin,Jingxin Li,Ping Lu,Baiwen Jiang,Yamei Bai,Tongyu Xiao,Yutong Cui. The Effects of Seasonal Precipitation Fluctuation on the Photosynthetic Pigments of Redroot Pigweed (Amaranthus retroflexus) and Soybean (Glycine max) [J]. Crops, 2016, 32(1): 154-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .