Crops ›› 2018, Vol. 34 ›› Issue (6): 68-75.doi: 10.16035/j.issn.1001-7283.2018.06.011

Previous Articles     Next Articles

Identification and Characterization of a Phosphate-Solubilizing Endophyte from Sugarcane

Di Yining1,Liu Lufeng1,Xie Linyan1,Li Yongmei2,He Pengfei2,Cui Wenyan2,Li Fusheng1,He Lilian1,3   

  1. 1 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan,China
    2 College of Plant Protection, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    3 Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2018-06-22 Revised:2018-09-13 Online:2018-12-15 Published:2018-12-06

Abstract:

An endophytic D5 strain was isolated from the stem of Yuetang 86-368 which came from one of the sugarcane cultivars.Colony morphology characteristics, physiological and biochemical tests, 16S rDNA, gyrB and rpoB sequence analyses were carried out. Phosphate-solubilizing capability of the strain was studied by methods of phosphorus hole and liquid culture, and the effect on the growth of maize seedling was studied by a pot experiment. The results showed that the D5 strain belonged to Pseudomonas extremorientalis. Its phosphate-solubilizing capability to different phosphate was different which followed the trend: tricalcium phosphate > phytic acid calcium > iron phosphate. The phosphate-solubilizing capacity was 0.939±0.012, 0.655±0.016, 0.125±0.005mg/mL, respectively. The pH value of the liquid media decreased to different extents and the numbers of living bacterium followed a trend of initial rise and then fall in all phosphorus source in the culture medium except in the iron phosphate cultivation showing a straight decline of dissolved phosphorus. Compared with the control (CK+P), the total fresh weight, total dry weight and total phosphorus content of maize seedlings in the D5 strain were increased by 45.92%, 32.65% and 45.01%, respectively. Therefore, it is an excellent candidate for microbial fertilizer.

Key words: Sugarcane, Endophyte, Molecular identification, Phosphate solubilizing

Table 1

Halo of phosphate-solubilization microorganism in solid media (7d) cm"

培养基类型Medium type 菌株Strain 菌落颜色Colony color 菌落直径Colony diameter (d) 溶磷圈直径Phosphorus ring diameter (D) D/d
PVK (Pikovskaya) 1-2 褐红 0.475 1.544 3.25
D5 砖红 1.100 1.650 1.50
NBRIP 1-2 黑蓝 0.850 1.800 2.12
D5 0.490 1.150 2.88
植酸钙Calcium phytate 1-2 淡紫 0.624 1.224 1.96
D5 淡黄 0.508 1.240 2.44

Fig.1

Variation available phosphorus content in culture medium during solubilizing period PVK (A), NBRIP (B), ironic phosphate (C) and calcium phytate (D), the same below"

Fig.2

Active bacteria number in culture medium during solubilizing period"

Fig.3

pH in culture medium during solubilizing period"

Table 2

Effects of D5 inoculation on maize seedling growth and plant phosphorus content"

处理
Treatment
地上鲜重(g)
Aboveground fresh weight
地上干重(g)
Aboveground dry weight
地下鲜重(g)
Underground fresh weight
地下干重(g)
Underground dry weight
总鲜重(g)
Total fresh weight
总干重(g)
Total dry weight
D5+P 16.78 1.65 10.64 0.95 27.42 2.60
D5 8.73 0.94 8.59 0.74 17.32 1.68
CK+P 11.97 1.12 6.82 0.84 18.79 1.96
CK 6.77 0.73 7.43 0.65 14.20 1.38
CK2 20.18 1.77 10.23 1.09 30.41 2.86

Fig.4

Total phosphorus content and pot growth of 10 seedlings in pot experiment"

Table 3

Comparison of 16S rDNA, gyrB and rpoB gene fragments of strain D5 in NCBI database"

菌株Strain 类群Species 属Genus 长度Length (bp) 同源菌株Homologous bacteria 序列号GenBank 一致性Indentities(%)
D5 Pseudomonas 16S rDNA 1 436 Pseudomonas extremorientalisCNU082017 KF979139.1 100
gyrB 1 171 Pseudomonas extremorientalis BS2774 LT629708.1 99
rpoB 1 552 Pseudomonas extremorientalisDSM15824T KX186863.1 99

Fig.5

Phylogenetic tree generated by the neighbor-joining method based on 16S rDNA sequences of selected strains Bootstrap values (1000 replicates) above 50% are indicated above the branches. Scale bar indicates 0.05% substitution of nucleotide. The same below"

Fig.6

Phylogenetic tree generated by the neighbor-joining method based on gyrB sequences of selected strains"

Fig.7

Phylogenetic tree generated by the neighbor-joining method based on rpoB sequences of selected strains"

[1] 张宝贵, 李贵桐 . 土壤生物在土壤磷有效化中的作用. 土壤学报, 1998,35(1):102-111.
[2] 黄静 . 植物内生解磷细菌的分离筛选及其生物多样性. 南京:南京农业大学, 2009.
doi: 10.7666/d.Y1762551
[3] Dobereiner J . Nitrogen-fixing bacteria of the genus Beijerinck Derx in the rhizosphere of sugar cane. Plant and Soil, 1961,15(3):211-216.
doi: 10.1007/BF01400455
[4] 陈炫, 林希昊 . 甘蔗根际土壤解磷细菌的筛选及培养条件优化. 热带农业科学, 2017,37(12):61-69.
[5] 史国英, 莫燕梅, 岑贞陆 , 等. 一株高效解无机磷细菌BS06的鉴定及其解磷能力分析. 微生物学报, 2015,42(7):1271-1278.
doi: 10.13344/j.microbiol.china.140721
[6] 赵小蓉, 林启美, 孙焱鑫 . 细菌解磷能力的测定方法的研究. 微生物学报, 2001,28(1):1-4.
[7] 曹哲群, 肖芙荣, 陈疏影 , 等. 7个蔗茅野生种及其后代材料苗期耐寒性鉴定. 作物杂志, 2017(5):43-48.
doi: 10.16035/j.issn.1001-7283.2017.05.008
[8] 石景雨, 何丽莲, 王先宏 , 等. 不同甘蔗品种叶片中总黄酮含量与提取工艺的优化研究. 作物杂志, 2016(5):19-24.
doi: 10.16035/j.issn.1001-7283.2016.05.004
[9] 叶劲松, 吴克, 俞志敏 . 一株无机磷细菌筛选及溶磷能力的测定. 江苏农业科学, 2013,41(6):333-335.
doi: 10.3969/j.issn.1002-1302.2013.06.120
[10] Johri J K, Surange S, Nautiyal C S . Occurrence of salt,pH,and temperature-tolerant,phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, 1999,39(2):89-93.
doi: 10.1007/s002849900424 pmid: 10398833
[11] 邵佳慧 . 解淀粉芽孢杆菌SQR9吲哚乙酸合成途径. 南京:南京农业大学, 2014.
[12] Pei-Chun (Lisa) Hsu . Determination of genes involved in bacterial phosphate solubilization. Lincoln University, New Zealand, 2014.
[13] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 312-314.
[14] Buchanan R E, Gibbons N E. 伯杰细菌鉴定手册. 8版. 北京: 科学出版社, 1984: 274-278.
[15] Holt J G, Krieg N R, Sneath P H A ,et al. Bergey’s Manual of Determinative Bacteriology (9th ed). Baltimore:Williams and Wilkins, 2004.
[16] Cheng H R, Jiang N . Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology Letters, 2006,28(1):55-59.
doi: 10.1007/s10529-005-4688-z pmid: 16369876
[17] Kim B J, Kim C J, Chun J , et al. Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase β-subunit gene (rpoB) sequence. International Journal of Systematic and Evolutionary Microbiology, 2004,54(2):593-598.
doi: 10.1109/7.705893 pmid: 15023980
[18] Gangwar M, Kaur G . Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass. Internet Journal of Microbiology, 2008,7(1):1-7.
[19] Viswanathan R, Samiyappan R . Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease in sugarcane. Sugar Tech, 1999,1(3):67-76.
doi: 10.1007/BF02945166
[20] Magnani G S, Didonet C M, Cruz L M , et al. Diversity of endophytic bacteria in Brazilian sugarcane. Genetics & Molecular Research, 2010,9(1):250-258.
doi: 10.4238/vol9-1gmr703 pmid: 20198580
[21] 刘文干, 何圆球, 张坤 , 等. 一株红壤溶磷菌的分离、鉴定及溶磷特性. 微生物学报, 2012,52(3):326-333.
[22] Illmer P, Schinner F . Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biology and Biochemistry, 1995,27(3):257-263.
doi: 10.1016/0038-0717(94)00190-C
[23] 赵小蓉, 林启美, 孙众焱 , 等. 小麦根际与非根际解磷细菌的分布. 华北农学报, 2001,16(1):111-115.
doi: 10.3321/j.issn:1000-7091.2001.01.021
[1] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[2] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings [J]. Crops, 2018, 34(4): 131-137.
[3] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology [J]. Crops, 2018, 34(1): 160-165.
[4] Ying Wei,Ruoting Zhan,Hongling Liang,Haohan Wang,Haibo Huang. Identification of Morinda officinalis and Its Three Close Plant Species Based on ITS2 and psbA-trnH [J]. Crops, 2017, 33(5): 55-60.
[5] Zhequn Cao,Furong Xiao,Shuying Chen,Lilian He,Fusheng Li. Identification of Cold Tolerance in Seven Wild Sugarcane and Three Offsprings at Seedling Stage [J]. Crops, 2017, 33(5): 43-48.
[6] Xiaoming Wang,Yiming Qin,Dacheng Li,Junfeng Lan,Hongjin Huang,Liangman Zhang,Xi Wei. Present Situation and Development Countermeasure for Production Technology of Green Double High Sugarcane in Laibin City, Guangxi Province [J]. Crops, 2017, 33(5): 14-20.
[7] Jingyu Shi,Lilian He,Xianhong Wang,Fusheng Li. Optimization of the Total Flavonoids Extraction Technology in Sugarcane Leaves [J]. Crops, 2016, 32(5): 19-24.
[8] Haiyang Hu,Qingqing Fu,Lilian He,Fusheng Li. Influence of New Type Fertilizer Haishengyuan on Cold Resistance of Sugarcane [J]. Crops, 2016, 32(3): 73-78.
[9] Xinhua Pang,Pengjin Zhu,Quanguang Zhou,Qinliang Tan,Chun Liang,Kewei Ou,Qiang Huang,Jingli Ou. Comparative Study of Introduced Sugarcane Varieties (Lines) in Guangxi [J]. Crops, 2016, 32(2): 73-78.
[10] . [J]. Crops, 2013, 29(3): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!