Crops ›› 2018, Vol. 34 ›› Issue (6): 76-82.doi: 10.16035/j.issn.1001-7283.2018.06.012

Previous Articles     Next Articles

Effects of Abscisic Acid on Growth and Photosynthetic Characteristics of Maize Seedlings under Low Temperature Stress

Tian Lixin1,Yang Ye1,Zuo Shiyu1,Liu Xuan1,Wei Shi1,Sun Lei2,Li Jing1   

  1. 1 College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2 Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2018-06-04 Revised:2018-09-05 Online:2018-12-15 Published:2018-12-06

Abstract:

Abscisic acid (ABA) is a plant hormone widely used in the physiological and biochemical processes of plants. The effects of ABA on photosynthetic characteristics of maize seedlings under low temperature stress were explored, which provided a theoretical basis for elucidating the defense and protection mechanism of photosynthetic structure of maize seedling leaves under low temperature stress. A pot experiment of maize seedlings (variety Jiulong 5) was conducted to investigate the changes of growth and photosynthetic characteristics of maize seedlings under different concentrations of abscisic acid at 0, 2, 4, 6 and 8 days after low temperature stress. The results showed that, the normal growth of maize seedlings was inhibited significantly under chilling stress. All the decreases in SPAD value, Pn, Tr, Gs, Fv/Fm, Fv/Fo and the increases in Fo reflected the inhibitory effects of chilling stress. Exogenous appropriate concentration of ABA led to a marked increase in Pn, Tr, Gs, Fv/Fm, Fv/Fo and the reduction in Fo of maize seedlings. Therefore, exogenous appropriate concentration of ABA could promote the photosynthesis, PSⅡ reactivity and substance accumulation, as well as enhance the chilling resistance of maize seedlings. Meanwhile, exogenous ABA has a certain concentration effect, that is, “low promotion and high inhibition”. The concentration of 15mg/L ABA in the designed concentration range was the most effective in alleviating the photosynthesis inhibition of chilling stress.

Key words: Maize, Abscisic acid, Chilling stress, Photosynthetic characteristics

Fig.1

Effects of exogenous ABA on the SPAD in the leaves of maize seedlings under chilling stress CK: treatment of clear water and room temperature; C0: treatment of clear water and low temperature; C5: treatment of low temperature and 5mg/L ABA; C15: treatment of low temperature and 15mg/L ABA; C25: treatment of low temperature and 25mg/L ABA; C35: treatment of low temperature and 35mg/L ABA. Different letters above the bar mean significant difference between them (P<0.05). The same below"

Fig.2

Effects of exogenous ABA on the Pn in the leaves of maize seedlings under chilling stress"

Fig.3

Effects of exogenous ABA on the Tr in the leaves of maize seedlings under chilling stress"

Fig.4

Effects of exogenous ABA on the Gs in the leaves of maize seedlings under chilling stress"

Fig.5

Effects of exogenous ABA on the Fo in the leaves of maize seedlings under chilling stress"

Fig.6

Effects of exogenous ABA on the Fv/Fm in the leaves of maize seedlings under chilling stress"

Fig.7

Effects of exogenous ABA on the Fv/Fo in the leaves of maize seedlings under chilling stress"

"

处理
Treatment
低温胁迫天数Days of chilling stress (d)
0 2 4 6 8
CK 0.35±0.03ab 0.45±0.02ab 0.50±0.04a 0.58±0.03a 0.83±0.03a
C0 0.32±0.03b 0.36±0.09b 0.42±0.01b 0.49±0.02b 0.72±0.02b
C5 0.34±0.03ab 0.41±0.02ab 0.45±0.04ab 0.56±0.02a 0.76±0.05ab
C15 0.38±0.02a 0.45±0.03a 0.48±0.03a 0.57±0.02a 0.82±0.03a
C25 0.34±0.05ab 0.44±0.03a 0.47±0.03ab 0.51±0.03ab 0.77±0.07ab
C35 0.31±0.03b 0.39±0.02ab 0.43±0.02b 0.55±0.02a 0.72±0.02b

Table 2

The correlation analysis between different characters"

相关系数Correlation coefficient SPAD Pn Tr Gs Fo Fv/Fm Fv/Fo 叶片干重Leaf dry weight
SPAD 1
Pn 0.52* 1
Tr 0.64* 0.50 1
Gs 0.60* 0.51* 0.63* 1
Fo -0.65* -0.65* -0.66** -0.62* 1
Fv/Fm 0.76* 0.63* 0.79** 0.69* -0.78** 1
Fv/Fo 0.49* 0.62** 0.57* 0.53* -0.65* 0.70** 1
叶片干重Leaf dry weight -0.37* -0.48* -0.44 -0.43 0.49* -0.46* -0.42 1
[1] 国家统计局. (2016-12-08)[2018-06-04]. .
[2] 扈光辉 . 玉米抗冷研究进展. 黑龙江农业科学, 2009(2):150-152.
[3] Janowiak F, Luck E, Dörffling K . Chilling tolerance of maize seedlings in the field during cold periods in spring is related to chilling-induced increase in abscisic acid level. Journal of Agronomy & Crop Science, 2003,189(3):156-161.
doi: 10.1046/j.1439-037X.2003.00027.x
[4] Chen L J, Xiang H Z, Miao Y , et al. An overview of cold resistance in plants. Journal of Agronomy & Crop Science, 2014,200(4):237-245.
doi: 10.1111/jac.12082
[5] Nguyen H T, Leipner J, Stamp P , et al. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiology & Biochemistry, 2009,47(2):116-122.
doi: 10.1016/j.plaphy.2008.10.010 pmid: 19042136
[6] Rivaroveda L, Périlleux C . Effects of cold temperatures on the early stages of maize (Zea mays L.). A review. Biotechnologie Agronomie Societe et Environnement, 2015,19(1):42-52.
[7] 马延华, 王庆祥, 陈绍江 . 玉米耐寒性生理生化机理与分子遗传研究进展. 玉米科学, 2013,21(3):76-81,86.
[8] Kosová K, Haise D, Tichá I . Photosynthetic performance of two maize genotypes as affected by chilling stress. Plant Soil Environment, 2005,51(5):206-212.
[9] Janowiak F, Dorffling K . Chilling of maize seedlings:changes in water status and abscisic acid content in ten genotypes differing in chilling tolerance. Journal of Plant Physiology, 1996,147(5):582-588.
doi: 10.1016/S0176-1617(96)80049-6
[10] Bravo L A, Zúñiga G E, Alberdi M , et al. The role of ABA in freezing tolerance and cold acclimation in barley. Physiologia Plantarum, 1998,103(1):17-23.
doi: 10.1034/j.1399-3054.1998.1030103.x
[11] Ahmed S, Higuchi H, Nawata E , et al. Effects of exogenous ABA and ethylene application and waterlogging on photosynthesis in Mungbean (Vigna radiate (L.) Wilczak). Japanese Journal of Tropical Agriculture, 2002,46(3):166-174.
[12] Wang Y, Zhu M L, Yang Y Q , et al. Exogenous application of abscisic acid (ABA) enhances chilling tolerance in seedlings of Napier Grass (Pennisetum purpureum Schum.). Agricultural Science & Technology, 2017,18(3):417-423.
[13] Guo W L, Chen R G, Gong Z H , et al. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genetics and Molecular Research, 2012,11(3):4063-4080.
doi: 10.4238/2012.September.10.5 pmid: 23079969
[14] Wang G J, Miao W, Wang J Y , et al. Effects of exogenous abscisic acid on antioxidant system in weedy and cultivated rice with different chilling sensitivity under chilling stress. Journal of Agronomy & Crop Science, 2012,199(3):200-208.
doi: 10.1111/jac.12004
[15] 杨东清, 王振林, 倪英丽 , 等. 高温和外源ABA对不同持绿型小麦品种籽粒发育及内源激素含量的影响. 中国农业科学, 2014,47(11):2109-2125.
doi: 10.3864/j.issn.0578-1752.2014.11.005
[16] 任旭琴, 缪旻珉 . 低温下喷施ABA对辣椒光合特性和N、P、K的影响. 湖北农业科学, 2008,47(12):1461-1463.
[17] Karimi R, Ershadi A, Nejad A R , et al. Abscisic acid alleviates the deleterious effects of cold stress on ‘Sultana’ grapevine (Vitis vinifera L.) plants by improving the anti-oxidant activity and photosynthetic capacity of leaves. Journal of Horticultural Science & Biotechnology, 2016,91(2):1-10.
doi: 10.1080/14620316.2016.1162027
[18] 黄宇, 林智勇, 荣俊冬 , 等. 脱落酸对低温下雷公藤幼苗光合作用及叶绿素荧光的影响. 应用生态学报, 2011,22(12):3150-3156.
[19] 李馨园, 杨晔, 张丽芳 , 等. 外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节. 作物学报, 2017,43(1):141-148.
doi: 10.3724/SP.J.1006.2017.00141
[20] 杨猛, 魏玲, 庄文锋 , 等. 低温胁迫对玉米幼苗电导率和叶绿素荧光参数的影响. 玉米科学, 2012,20(1):90-94.
doi: 10.3969/j.issn.1005-0906.2012.01.017
[21] Mishra A, Mishra K B, Höermiller I I , et al. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signaling & Behavior, 2011,6(2):301-310.
doi: 10.4161/psb.6.2.15278 pmid: 3121992
[22] Mohanty S, Grimm B, Tripathy B C . Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta, 2006,224(3):692-699.
doi: 10.1007/s00425-006-0248-6
[23] Yadegari L Z, Heidari R, Carapetian J . The influence of cold acclimation on proline,malondialdehyde (MDA),total protein and pigments contents in soybean (Glycine max) seedlings. Journal of Biological Sciences, 2008,3(1):74-79.
[24] Pagter M, Liu F, Jensen C R , et al. Effects of chilling temperatures and short photoperiod on PSⅡ function,sugar concentrations and xylem sap ABA concentrations in two hydrangea species. Plant Science, 2008,175(4):547-555.
doi: 10.1016/j.plantsci.2008.06.006
[25] Kalisz A, Jezdinský A, Pokluda R , et al. Impacts of chilling on photosynthesis and chlorophyll pigment content in juvenile basil cultivars. Horticulture Environment & Biotechnology, 2016,57(4):330-339.
doi: 10.1007/s13580-016-0095-8
[26] Zeng Y H, Zhang Y P, Xiang J , et al. Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity,endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings. Journal of Integrative Agriculture, 2015,15(2):295-308.
doi: 10.1016/S2095-3119(15)61051-6
[27] Mohabbati F, Paknejad F, Vazan S , et al. Protective effect of exogenous PGRs on chlorophyll fluorescence and membrane integrity of rice seedlings under chilling stress. Research Journal of Applied Sciences Engineering & Technology, 2013,5(1):146-153.
[28] Hendrickson L, Ball M C, Wood J T , et al. Low temperature effects on photosynthesis and growth of grapevine. Plant, Cell & Environment, 2004,27(7):795-809.
doi: 10.1111/j.1365-3040.2004.01184.x
[29] Allen D J, Ort D R . Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 2001,6(1):36-42.
[30] Zhou B Y, Guo Z F, Lin L . Effects of abscisic acid application on photosynthesis and photochemistry of Stylosanthes guianensis under chilling stress. Plant Growth Regulation, 2006,48(3):195-199.
doi: 10.1007/s10725-006-0005-7
[31] Bertamini M, Zulini L, Muthuchelian K , et al. Low night temperature effects on photosynthetic performance on two grapevine genotypes. Biologia Plantarum, 2007,51(2):381-385.
doi: 10.1007/s10535-007-0080-2
[32] Souza T C D, Magalhães P C, Castro E M D , et al. The influence of ABA on water relation,photosynthesis parameters,and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiologiae Plantarum, 2013,35(2):515-527.
doi: 10.1007/s11738-012-1093-9
[33] Baker N R . Chlorophyll fluorescence:a probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008,59(1):89-113.
doi: 10.1146/annurev.arplant.59.032607.092759
[1] Zhang Shaoyun,Li Xiangling,Liu Pan,Zhang Yue,Zhai Dashuai,Yin Baozhong. Effects of Soil Tillage and Fertilization on Root Microstructure and Yield in Maize [J]. Crops, 2018, 34(6): 144-148.
[2] Ming Bo,Wang Keru,Xie Ruizhi,Hou Peng,Li Shaokun. Researches on Maize Grain Dehydration and Countermeasures for Mechanical Grain Harvesting [J]. Crops, 2018, 34(6): 17-21.
[3] Chen Guangzhou,Wang Guangfu,Qu Jianzhou,Si Leiyong,Jin Yan,Xu Shutu,Xue Jiquan,Lu Haidong. Study on Grain Dehydration Rate and Correlation Analysis of Major Related Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[4] Su Guihua,Li Chunlei,Su Yichen. Evaluation of 22 Main Popularized Varieties by Variety Regional Trails in Jilin Province [J]. Crops, 2018, 34(5): 63-70.
[5] Wu Ronghua,Zhuang Kezhang,Liu Peng,Zhang Chunyan. Response of Summer Maize Yield to Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[6] Li Shaokun,Zhang Wanxu,Wang Keru,Han Dongsheng,Yang Xiaoxia,Chen Yongsheng,Yu Wanbing,Liu Chaowei,Zhang Guoqiang,Liu Fenghe,Chen Jianglu,Yang Jingjing,Li Lulu,Xie Ruizhi,Hou Peng,Ming Bo. Study on Maize Mechanical Grain Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[7] Gao Wenjun,Yang Guoyi,Gao Xinzhong,Yu Zhu,Xu Qingfang,Yuan Xiangyang,Sun Yaowu. The Effects of Nitrogen, Phosphorus, or Potassium Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[8] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[9] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties [J]. Crops, 2018, 34(4): 79-83.
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang [J]. Crops, 2018, 34(4): 62-68.
[11] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia [J]. Crops, 2018, 34(4): 149-153.
[12] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings [J]. Crops, 2018, 34(4): 131-137.
[13] Yiran Ye, ,Bencai Sha,Wenxiang Wang,Hongda Ye,Shixian Geng,Jingjin Cheng,Meirong Hai. Effects of Different Fertilizers on Photosynthetic Characteristics of Winter Potato [J]. Crops, 2018, 34(3): 135-140.
[14] Jiao Zhang,Qi Wu,Yufei Zhou,Yitao Wang,Ruidong Zhang,Ruidong Huang. Effects of Drought and Rewatering at Seedling and Filling Stages on Photosynthetic Characteristics and Dry Matter Production of Sorghum [J]. Crops, 2018, 34(3): 148-154.
[15] Fang Chen,Yupeng Liu,Xiaoping Gu,Jiamin Hu,Fei Yu,Bo Zhang. Effects of Low Temperature on Photosynthetic Characteristics and Yield of Tea (Camellia sinensis L.) [J]. Crops, 2018, 34(3): 155-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!