Crops ›› 2018, Vol. 34 ›› Issue (3): 155-161.doi: 10.16035/j.issn.1001-7283.2018.03.024

Previous Articles     Next Articles

Effects of Low Temperature on Photosynthetic Characteristics and Yield of Tea (Camellia sinensis L.)

Chen Fang,Liu Yupeng,Gu Xiaoping,Hu Jiamin,Yu Fei,Zhang Bo   

  1. Mountain Environment and Climate Research Institute of Guizhou Province/Guizhou Provincial Key Laboratory of Climate and Resources, Guiyang 550002, Guizhou, China
  • Received:2018-02-12 Revised:2018-04-27 Online:2018-06-20 Published:2018-06-20

Abstract:

Fuding white tea was used as a test material to investigate the effects of different low temperature conditions on the photosynthetic, characteristics and yield of tea tree, and provide a theoretical basis for the production, distribution and management of tea tree. The effects of low temperature on the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr), under -2℃, -1℃, 0℃, 1℃, 3℃, 5℃ low temperature. The results showed: (1) With the decreasing of temperature, the apparent quantum efficiency (Q), maximum photosynthetic rate (Pnmax) and dark respiration rate (Rd) of tea plants showed different degrees of response, and showed a downward trend. (2) Pn, Ci, water use efficiency (WUE)of tea leaves decreased, and Gs fluctuated. (3) When the photosynthetically active radiation was 0mol/(m 2?s), Pn of each treatment was negative, and with the increasing of photosynthetically active radiation, the Pn increased gradually, and then no longer increased after a certain degree. (4) The Pn of tea leaves was positively correlated with Gs and Tr, and negatively correlated with Ci, which reached an extremly significant level (P<0.01). The Q, Pnmax, Rd, LCP, LSP and other parameters of leaves of tea leaves were significantly different under different low temperature treatments. (5) As the degree of low temperature increased, 100-bud weight of tea plants decreased in different degrees. After the temperature dropped to -1℃, the yield of tea was continuously 3days, and the yield of tea production decreased by 19.02%. In the process of low temperature stress, indicators related to photosynthetic characteristics have changed significantly. Tea quality and yield were effected under -2℃ low temperature condition. So it should be paid attention to the prevention of freezing injury by cultivation and management measures.

Key words: Low temperature, Tea tree, Photosynthetic characteristics, Yield

Table 1

Temperature variation and duration of 6 low temperature gradients"

试验编号
Test
number
组合代号
Combination
code
温度与时间组合
Combination of temperature and duration
最低温度(℃)
Minimum
temperature
最高温度(℃)
Maximum
temperature
持续时间(d)
Duration
1-1 -2-3-1d -2 3 1
1-2 -2-3-2d -2 3 2
1-3 -2-3-3d -2 3 3
2-1 -1-4-1d -1 4 1
2-2 -1-4-2d -1 4 2
2-3 -1-4-3d -1 4 3
3-1 0-5-1d 0 5 1
3-2 0-5-2d 0 5 2
3-3 0-5-3d 0 5 3
4-1 1-6-3d 1 6 3
4-2 1-6-5d 1 6 5
4-3 1-6-7d 1 6 7
5-1 3-8-3d 3 8 3
5-2 3-8-5d 3 8 5
5-3 3-8-7d 3 8 7
6-1 5-10-3d 5 10 3
6-2 5-10-5d 5 10 5
6-3 5-10-7d 5 10 7

Table 2

Effects of different low temperature treatments on photosynthetic characteristics of tea leaves"

处理Treatment Pn [μmol/(m2·s)] Tr [mmolH2O/(m2·s)] Gs [molH2O/(m2·s)] Ci [μmol CO2/mol] WUE [μmol/mmol]
-2-3-1d 1.82±0.66cd 0.78±0.22a 0.16±0.011cd 311.18±2.11e 0.43±0.49e
-2-3-2d 1.65±0.60d 0.69±0.20ab 0.14±0.002d 311.71±7.29e 2.61±0.60cd
-2-3-3d 1.53±0.52de 0.26±0.03cd 0.11±0.003d 311.45±9.42e 3.15±0.88c
-1-4-1d 1.70±0.69cd 0.42±0.14bc 0.27±0.005bc 498.45±5.00a 1.12±0.94cd
-1-4-2d 2.49±0.82c 0.33±0.05c 0.08±0.008de 444.86±1.90ab 2.92±0.70c
-1-4-3d 2.17±0.84c 0.32±0.14c 0.05±0.004de 369.74±1.20cd 0.83±0.35de
0-5-1d 3.88±1.64b 0.89±0.05a 0.28±0.017bc 424.08±3.84ab 5.47±0.27bc
0-5-2d 3.48±1.72b 0.21±0.08cd 0.17±0.014c 344.94±5.12de 9.77±0.75a
0-5-3d 2.72±1.02bc 0.56±0.08b 0.35±0.007b 391.29±4.31cd 6.36±0.16bc
1-6-3d 3.53±1.15b 0.46±0.15bc 0.37±0.022b 353.66±5.04de 7.17±0.69b
1-6-5d 3.54±1.48b 0.66±0.15ab 0.75±0.036a 412.24±9.50b 6.91±0.45b
1-6-7d 4.82±1.86ab 0.52±0.19b 0.32±0.013b 312.24±5.20e 9.28±0.51a
3-8-3d 4.79±1.71ab 0.47±0.21b 0.16±0.010cd 317.71±4.33e 4.90±0.47c
3-8-5d 3.35±0.12b 0.15±0.11d 0.04±0.001de 378.39±1.65cd 0.82±0.33de
3-8-7d 3.53±1.31b 0.35±0.04bc 0.12±0.002d 492.58±1.63a 2.88±0.81c
5-10-3d 5.71±2.20a 0.28±0.07cd 0.03±0.001e 405.15±3.86b 8.34±0.91b
5-10-5d 3.82±0.89b 0.14±0.03de 0.05±0.006de 448.87±1.09ab 5.14±0.09bc
5-10-7d 4.29±0.15ab 0.11±0.03de 0.05±0.001de 427.01±2.60ab 4.55±0.81c
CK 3.36±1.08bc 0.75±0.19ab 0.03±0.020b 395.24±2.61cd 4.30±0.69c

Fig.1

Light response curves of tea leaves under different low temperature gradients"

Table 3

Effects of different low temperature treatments on photosynthetic parameters of tea leaves"

处理Treatment Q [μmol CO2/(m2·s)] Pnmax [μmol/(m2·s)] Rd [μmolCO2/(m2·s)] LCP [μmol/(m2·s)] LSP [μmol/(m2·s)]
-2-3-1d 0.025±0.78de 13.90±0.81d 0.34±0.14e 13.60±0.75d 569.60±3.46a
-2-3-2d 0.029±0.29de 14.74±0.91cd 0.31±0.33e 10.69±0.32e 518.97±2.15ab
-2-3-3d 0.037±0.13cd 12.71±0.79e 0.51±0.15d 13.78±0.68d 357.30±1.89cd
-1-4-1d 0.031±0.42d 13.73±0.12d 0.35±0.34e 11.29±0.26e 454.19±2.21bc
-1-4-2d 0.047±0.06bc 21.63±0.94ab 0.56±0.30cd 11.91±0.35e 472.13±3.20b
-1-4-3d 0.032±0.01d 14.41±0.98cd 0.63±0.16c 19.69±0.78bc 470.00±2.48b
0-5-1d 0.022±0.02e 13.43±0.32de 0.76±0.90b 34.55±0.91a 645.00±6.31a
0-5-2d 0.046±0.01bc 10.47±0.34e 0.72±0.50bc 15.65±0.21cd 243.26±1.02e
0-5-3d 0.048±0.74bc 13.75±0.61d 0.68±0.68bc 14.17±0.65d 300.63±1.56de
1-6-3d 0.036±0.81cd 14.39±0.89cd 0.59±0.14cd 16.39±0.52c 416.11±2.41bc
1-6-5d 0.042±0.75c 19.70±0.39b 0.56±0.78cd 13.33±0.34d 482.38±2.98b
1-6-7d 0.047±0.03bc 15.16±0.96c 0.73±0.37b 15.53±0.25cd 338.09±1.95d
3-8-3d 0.053±0.01b 14.10±0.52cd 0.84±0.13ab 15.85±0.48cd 281.89±1.35e
3-8-5d 0.046±0.01bc 13.56±0.87de 0.92±0.04a 20.00±0.31b 314.78±2.64de
3-8-7d 0.044±0.01c 19.99±0.61b 0.95±0.04a 21.59±0.29b 475.91±3.51b
5-10-3d 0.046±0.25bc 13.87±0.42d 0.73±0.03b 15.87±0.51cd 317.39±2.47d
5-10-5d 0.051±0.01b 19.88±0.22b 0.88±0.05ab 17.25±0.37c 407.06±3.06c
5-10-7d 0.071±0.02a 23.37±0.42a 0.92±0.38a 12.96±0.13de 342.11±2.59cd
CK 0.075±0.84a 24.77±0.82a 0.96±0.11a 12.80±0.22de 343.07±3.12cd

Table 4

Correlation between Pn and other photosynthetic parameters in tea leaves under different low temperature treatments"

处理Treatment Gs Ci Tr
-2-3-1d 0.950** -0.937** 0.949**
-2-3-2d 0.433 -0.792** 0.771**
-2-3-3d 0.692* -0.935** 0.795**
-1-4-1d 0.459 -0.381 0.852**
-1-4-2d 0.950** -0.846** 0.975**
-1-4-3d 0.805** -0.697* 0.863**
0-5-1d 0.979** -0.692* 0.120
0-5-2d 0.871** -0.674* 0.876**
0-5-3d 0.599 -0.781** 0.607
1-6-3d 0.339 -0.855** 0.794**
1-6-5d 0.926** -0.779** 0.426
1-6-7d 0.594 -0.810** 0.689*
3-8-3d 0.861** -0.776** 0.952**
3-8-5d 0.850** -0.945** 0.883**
3-8-7d 0.778** -0.464 0.894**
5-10-3d 0.716* -0.599 0.943**
5-10-5d 0.992** -0.830** 0.936**
5-10-7d 0.531 -0.448 0.537
CK 0.921** -0.812** 0.924**

Table 5

Effect of low temperature on tea yield"

处理Treatment 芽数Bud number 总重Total weight (g) 百芽重100-bud weight (g) 减产率Yield reduction (%)
-2-3-1d 31 3.11±0.04c 10.01±0.005e 11.56
-2-3-CK 25 2.83±0.04d 11.32±0.003d -
-1-4-1d 27 3.08±0.04cd 11.39±0.002de 6.57
-1-4-2d 26 2.81±0.03d 10.78±0.003e 11.57
-1-4-3d 32 3.16±0.04c 9.88±0.002e 19.02
-1-4-CK 30 3.66±0.04bc 12.19±0.003d -
0-5-1d 14 1.71±0.04e 12.17±0.004de 3.14
0-5-2d 15 1.66±0.04e 11.05±0.003de 12.08
0-5-3d 17 1.79±0.04e 10.51±0.002e 16.39
0-5-CK 10 1.26±0.04e 12.57±0.006d -
1-6-3d 8 1.61±0.04e 20.05±0.001ab 5.88
1-6-5d 15 2.96±0.04d 19.71±0.003b 7.47
1-6-7d 13 2.49±0.04de 19.21±0.003bc 9.86
1-6-CK 12 2.56±0.04de 21.31±0.007a -
3-8-3d 25 5.11±0.04a 19.42±0.005ab 1.68
3-8-5d 27 5.26±0.03a 19.47±0.003bc 1.66
3-8-7d 21 3.98±0.04b 18.98±0.002c 4.13
3-8-CK 18 3.56±0.05bc 19.80±0.006b -
5-10-3d 19 3.91±0.04b 20.54±0.004a 0.95
5-10-5d 25 5.16±0.04a 20.63±0.006a 0.56
5-10-7d 17 3.47±0.16bc 20.39±0.003ab 1.72
5-10-CK 22 4.56±0.04ab 20.75±0.003a -
[1] 李娜娜 . 新梢白化茶树生理生化特征及白化分子机理研究. 杭州:浙江大学, 2015.
[2] 肖正东, 程鹏, 马永春 , 等. 不同种植模式下茶树光合特性、茶芽性状及茶叶化学成分的比较. 南京林业大学学报(自然科学版), 2011,35(2):15-19.
[3] 杨再强, 韩冬, 王学林 , 等. 寒潮过程中4个茶树品种光合特性和保护酶活性变化及品种间差异. 生态学报, 2016,36(3):629-641.
doi: 10.5846/stxb201405130981
[4] Shu S, Tang Y Y, Yuan Y H , et al. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiology and Biochemistry, 2016,107(6):344-353.
[5] 孔海云 . 茶树低温光抑制发生的条件及遮荫效应研究. 泰安:山东农业大学, 2011.
doi: 10.7666/d.d143704
[6] 蒋跃林, 张仕定, 张庆国 . 大气CO2浓度升高对茶树光合生理特性的影响. 茶叶科学, 2005,25(1):43-48.
[7] 程鹏, 马永春, 肖正东 , 等. 不同林分内茶树光合特性及其影响因子和小气候因子分析. 植物资源与环境学报, 2012,21(2):79-83.
doi: 10.3969/j.issn.1674-7895.2012.02.012
[8] 刘伟, 艾希珍, 梁文娟 , 等. 低温弱光下水杨酸对黄瓜幼苗光合作用及抗氧化酶活性的影响. 应用生态学报, 2009,20(2):441-445.
doi: 10.3969/j.issn.1673-8225.2011.43.018
[9] 须海荣, 童启庆, 骆耀平 , 等. 浙江茶树资源光合特性的研究. 浙江农业大学学报, 1992,18(S1):48-52.
[10] 李勇, 杨晓光, 代姝玮 , 等. 气候变化背景下贵州省倒春寒灾害时空演变特征. 应用生态学报, 2010,21(8):2099-2108.
[11] 李叶云, 庞磊, 陈启文 , 等. 低温胁迫对茶树叶片生理特性的影响. 西北农林科技大学学报(自然科学版), 2012,40(4):134-138.
[12] 王跃华, 张丽霞, 孙其远 . 钙过量对茶树光合特性及叶绿体超微结构的影响. 植物营养与肥料学报, 2010,16(2):432-438.
doi: 10.11674/zwyf.2010.0226
[13] 钟芳永 . 不同肥料处理对茶树生理特性及茶叶品质的影响. 福州:福建农林大学, 2013.
[14] 余海云 . 茶树不同冠层叶片光合作用特性及其季节变化特性的研究. 北京:中国农业科学院, 2013.
[15] 刘自刚, 孙万仓, 方彦 , 等. 夜间低温对白菜型冬油菜光合机构的影响. 中国农业科学, 2015,48(4):672-682.
doi: 10.3864/j.issn.0578-1752.2015.04.05
[16] Liu Z G, Sun W C, Zhao Y N , et al. Effects of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed. Russian Journal of Plant Physiology, 2016,63(4):451-460.
[17] 朱政, 蒋家月, 江昌俊 , 等. 低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响. 安徽农业大学学报, 2011,38(1):24-26.
[18] 陶汉之 . 茶树光合日变化的研究. 作物学报, 1991,17(6):444-452.
[19] 青木智, 黄建安 . 光照与低温在降低茶树叶片光合作用中的相互作用. 蚕桑茶叶通讯, 1989(2):37-38.
[20] 王学林 . 江南茶区春霜冻风险评价技术研究. 南京:南京信息工程大学, 2015.
[21] 袁祖丽, 孙晓楠, 冯松田 , 等. 引种茶树品种光合、荧光特性的比较研究. 河南农业科学, 2010(7):26-30.
doi: 10.3969/j.issn.1004-3268.2010.07.007
[22] 许燕 . 6个特色茶树品种(系)光合特性及叶绿体超微结构研究. 雅安:四川农业大学, 2016.
[23] 唐明德 . 茶树新梢生育状况对叶片光合速率影响的研究. 作物学报, 1987(4):336-345.
[24] 闫小莉, 王德炉 . 遮荫对苦丁茶树叶片特征及光合特性的影响. 生态学报, 2014,34(13):3538-3547.
doi: 10.5846/stxb201306241761
[25] 周贤军 . 几种主栽茶树品种光合特性及其有效成分的比较研究. 南京:南京林业大学, 2008.
doi: 10.7666/d.y1295782
[26] 王峰, 陈玉真, 王秀萍 , 等. 不同品种茶树叶片功能性状及光合特性的比较. 茶叶科学, 2016,36(3):285-292.
[27] 何洁, 刘鸿先, 王以柔 , 等. 低温与植物的光合作用. 植物生理学通讯, 1986(2):1-6.
[28] 李庆会, 徐辉, 周琳 , 等. 低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响. 植物资源与环境学报, 2015,24(2):26-31.
[29] 刘自刚, 孙万仓, 杨宁宁 , 等. 冬前低温胁迫下白菜型冬油菜抗寒性的形态及生理特征. 中国农业科学, 2013,46(22):4679-4687.
doi: 10.3864/j.issn.0578-1752.2013.22.005
[30] 吕晋慧, 王玄, 冯雁梦 , 等. 遮荫对金莲花光合特性和叶片解剖特征的影响. 生态学报, 2012,32(19):6033-6043.
doi: 10.5846/stxb201109101327
[31] 张守仁 . 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999,16(4):444-448.
doi: 10.3969/j.issn.1674-3466.1999.04.021
[32] 吴雪霞, 陈建林, 查丁石 . 低温胁迫对茄子幼苗叶片光合特性的影响. 华北农学报, 2008,23(5):185-189.
doi: 10.7668/hbnxb.2008.05.040
[33] 薄晓培, 王梦馨, 崔林 , 等. 茶树3类渗透调节物质与冬春低温相关性及其品种间的差异评价. 中国农业科学, 2016,49(19):3807-3817.
doi: 10.3864/j.issn.0578-1752.2016.19.012
[34] 娄伟平 . 浙江省大佛龙井产区春季茶叶霜冻灾害研究. 南京:南京信息工程大学, 2013.
[35] 曾光辉, 马青平, 王伟东 , 等. 自然低温对茶树内源激素含量的影响. 茶叶科学, 2016,36(1):85-91.
[36] 蒋家月, 金凤玲, 王芸芳 , 等. 冬季自然低温胁迫对茶树抗寒生理指标的影响. 安徽农业大学学报, 2012,39(3):394-396.
[1] Zhao Xin, Chen Shaofeng, Wang Hui, . Research on the Yield and Quality of Different Tartaty#br# Buckwheat Varieties in Northern Shanxi Area [J]. Crops, 2018, 34(5): 27-32.
[2] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[3] Su Feifei, Zhang Jinghua, Li Yong, Liu Shangwu, Liu Zhenyu, Wang Shaopeng, Wan Shuming, Chen Xi, Gao Yunfei, Hu Linshuang, Lü Dianqiu. Effects of Different Irrigation Methods on#br# Physiological Characteristics and Water#br# Use Efficiency of Potato [J]. Crops, 2018, 34(5): 97-103.
[4] Zhang Ruidong, Cao Xiong, Yue Zhongxiao, . Effects of Nitrogen and Density Interaction on Grain#br# Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115.
[5] An Xia, Zhang Haijun, Jiang Fangshan, Lü Lianjie, Chen Jun. Effects of Different Sowing Dates and Sowing#br# Densities on the Population Structure and#br# Yield of Two Spike Type Winter Wheats [J]. Crops, 2018, 34(5): 132-136.
[6] Gao Wenjun, Yang Guoyi, Gao Xinzhong, Yu Zhu, . The Effects of Nitrogen, Phosphorus, or Potassium#br# Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[7] Wang Xiaolin, Ji Xiaoling, Zhang Panpan, Zhang Xiong, Zhang Jing. Correlation Analysis between Aboveground Biomass#br# Allocation and Grain Yield in Different Varieties of#br# Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[8] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation [J]. Crops, 2018, 34(4): 121-125.
[9] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area [J]. Crops, 2018, 34(4): 126-130.
[10] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum [J]. Crops, 2018, 34(4): 138-142.
[11] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
[12] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years [J]. Crops, 2018, 34(4): 32-36.
[13] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China [J]. Crops, 2018, 34(4): 42-47.
[14] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[15] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat [J]. Crops, 2018, 34(4): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .