Crops ›› 2018, Vol. 34 ›› Issue (5): 33-39.doi: 10.16035/j.issn.1001-7283.2018.05.006

Previous Articles     Next Articles

Study on Grain Dehydration Rate and Correlation Analysis of Major Related Characters in Different Maize Inbred Lines

Chen Guangzhou,Wang Guangfu,Qu Jianzhou,Si Leiyong,Jin Yan,Xu Shutu,Xue Jiquan,Lu Haidong   

  1. College of Agronomy, Northwest A & F University/Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2018-03-23 Revised:2018-06-27 Online:2018-10-15 Published:2018-10-12
  • Contact: Jiquan Xue,Haidong Lu

Abstract:

This study was set up to explore the characteristics and difference of grain dehydration rate of different groups (Shaan A group and Shaan B group) of maize inbred lines, to analyse major related factors characters affecting grain dehydration rate of maize. Eight maize inbred lines from the Shaan A and Shaan B groups and 2 elite inbred lines (‘chang7-2’, ‘PH4CV’) were used as the test materials. The change characteristics of grain dehydration rate, grain water content in harvest period, grain filling rate, husk characters, ear characters, leaf area, chlorophyll content, plant height, ear height and yield components in different maize inbred lines were analyzed. The relationships between all traits and grain dehydration rate were studied. The results showed that the changes of different maize inbred lines in grain dehydration rate were “fast-slow-faster-slow-faster-slow”. There was a significant negative correlation between the grain dehydration rate and grain moisture content at harvest, the moisture content of bracts, the number of bract layers, the length of bract, the ear diameter, the grain length, the grain width, the leaf area, the SPAD value and the days of grain filling. There was a significant positive correlation between the dehydration rate of grain and the dehydration rate of bract. The correlations between the grain dehydration rate with the plant height, ear height, yield and the other traits was not significant. There were significant differences in grain dehydration rate, grain moisture content at harvest, husk moisture content, husk dehydration rate and other various related indexes among different maize inbred lines. KB043, KA105 and KB024 can be considered as breeding materials for machnical harvesting due to their high grain dehydration rates and higher yields.

Key words: Maize, Inbred line, Dehydration rate, Correlation analysis

Fig.1

Grain dehydration rate in different maize inbred lines Different small letters indicate significant difference at 0.05 level. The same below"

Fig.2

The grain moisture content in different maize inbred lines"

Table 1

The comparison of leaf area, SPAD value, plant height, and ear height among different maize inbred lines"

指标Index KB043 KB593 KB024 KA105 KA106 KA109 KB102 昌7-2 Chang7-2 PH4CV 91227 F
单株叶面积Leaf area per plant (cm2) 2 752b 3 746ab 3 498ab 4 096ab 4 740a 3 835ab 3 815ab 4 023ab 3 621b 4 043ab 3.99*
SPAD值SPAD value 49.2ab 51.1ab 46.4b 50.6ab 52.9ab 47.9ab 58.7a 51.2ab 44.0b 53.7ab 3.93*
株高Plant height (cm) 175.6de 185.8d 174.6de 222.8b 242.6a 227.0b 160.0e 163.3e 206.4c 206.9c 61.19**
穗位高Ear height (cm) 67.9abc 66.5abc 56.9cd 59.6bc 72.7ab 73.7ab 47.9d 78.6a 67.9abc 76.4a 10.93**

Table 2

The comparison of ear characters among different maize inbred lines"

指标Index KB043 KB593 KB024 KA105 KA106 KA109 KB102 昌7-2 Chang7-2 PH4CV 91227 F
穗长Ear length (cm) 13.9b 16.1a 16.3a 13.9b 15.0ab 15.6ab 15.6ab 9.9c 13.8b 14.3ab 16.68**
穗粗Ear width (cm) 4.05bc 3.83cd 3.47d 3.91bc 4.45a 4.25ab 3.87d 4.05bc 3.65d 3.74cd 12.25**
轴粗Cob diameter (cm) 2.42bc 2.75cd 2.24d 2.70bc 2.78ab 2.90a 2.25d 2.69bc 2.64d 2.35cd 17.87**
穗行数Rows per ear 16ab 18a 18a 16ab 18a 16ab 12c 16ab 14bc 16ab 5.56**
行粒数Kernels per row 23abc 21bc 26abc 28a 28a 25abc 22abc 21abc 20c 23abc 4.26**
粒长Grain length (cm) 0.72ab 0.54c 0.62bc 0.65abc 0.84a 0.68abc 0.81abc 0.60abc 0.51c 0.70abc 5.22**
粒宽Grain width (cm) 0.72bc 0.66c 0.63c 0.65c 0.72bc 0.81ab 0.86a 0.73bc 0.69bc 0.74bc 7.50**
粒厚Grain thickness (cm) 0.52cd 0.61ab 0.51cd 0.46d 0.49cd 0.55bc 0.64a 0.44d 0.51cd 0.55bc 10.06**

Table 3

The comparison of husk dehydration rate, husk moisture content and other characters of husk among different maize inbred lines"

指标Index KB043 KB593 KB024 KA105 KA106 KA109 KB102 昌7-2 Chang 7-2 PH4CV 91227 F
苞叶脱水速率Husk dehydration rate (%/d) 1.45a 1.40a 1.41a 1.06c 1.14b 0.96de 1.00cd 1.37a 1.12b 0.91e 167.50**
苞叶含水率Husk moisture content (%) 65.81ab 63.18b 67.60a 66.93a 68.17a 69.47a 69.51a 66.49ab 67.55a 69.54a 38.52**
苞叶层数Number of husk 9d 13a 13a 11bc 10cd 10cd 8e 11bc 10cd 11bc 29.37**
苞叶长度Length of husk (cm) 16.94b 20.07ab 16.96b 18.83ab 22.67a 21.94a 22.16a 12.95c 16.77b 22.93a 6.68**

Table 4

The yield and yield composition of different maize inbred lines"

指标Index KB043 KB593 KB024 KA105 KA106 KA109 KB102 昌7-2
Chang7-2
PH4CV 91227 F
百粒干重100-grain dry weight (g) 20.87cd 16.28de 15.93e 20.69cd 22.69bc 25.98ab 27.46a 18.67cd 21.10bc 21.70bc 86.45**
子粒灌浆速率Grain filling rate [g/(100 grain·d)] 0.65a 0.50f 0.49g 0.57c 0.55d 0.64b 0.65a 0.46h 0.65a 0.51e 100.2**
灌浆天数Filling days (d) 35e 37de 38de 39cde 41bcd 43abc 44ab 43abc 36de 46a 16.43**
产量Yield (kg/hm2) 5445b 4320b 4770b 7800a 7920a 6960a 4320b 4140b 4815b 5595b 21.87**

Table 5

Correlation analysis of grain dehydration rate with other triats"

性状Trait R 性状Trait R
苞叶层数(X1) Number of husk -0.744* 灌浆天数(X8) Filling days -0.761*
苞叶长度(X2) Length of husk -0.745* 粒长(X9) Grain length -0.635*
苞叶含水率(X3) Husk moisture content -0.632* 粒厚Grain thickness -0.096
苞叶脱水速率(X4) Husk dehydration rate 0.662* 粒宽(X10) Grain width -0.632*
穗长Ear length 0.109 百粒干重100-grain dry weight -0.517
穗粗(X5) Ear width -0.671* 子粒灌浆速率Grain filling rate 0.139
株高Plant height -0.324 收获期子粒含水率(X11) Grain moisture content at harvest -0.886**
穗位高Ear height -0.215 穗行数Rows per ear 0.157
叶面积(X6) Leaf area -0.795** 行粒数Grains per row -0.207
SPAD值(X7) SPAD value -0.633* 产量Yield -0.321

Table 6

Correlation analysis of 11 major traits of maize inbred lines"

项目Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X2 0.471
X3 0.282 0.343
X4 -0.486 -0.501 -0.837**
X5 0.674* 0.270 0.321 -0.193
X6 0.831** 0.474 0.453 -0.543 0.416
X7 0.340 0.593 0.336 -0.352 0.265 0.372
X8 0.370 0.534 0.730* -0.746* 0.231 0.566 0.633*
X9 0.306 0.368 0.613 -0.302 0.618 0.346 0.712* 0.532
X10 0.103 0.395 0.680* -0.580 0.408 0.084 0.568 0.638* 0.595
X11 0.628 0.661* 0.705* -0.706* 0.437 0.737* 0.815** 0.784** 0.716* 0.625
[1] 张大鹏 . 玉米机械化收获技术的制约因素及对策. 农业开发与装备, 2014(10):101-102.
[2] 孙凤霞 . 玉米机械化收获存在的问题及对策. 现代农业科技, 2014(19):232-235.
[3] 秦海生 . 推动玉米跨区机收正当其时. 当代农机, 2016(9):20-22.
[4] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50(11):2027-2035.
[5] 李淑芳, 张春宵, 李晓辉 , 等. 玉米籽粒自然脱水速率研究进展. 分子植物育种, 2014,12(4):825-829.
[6] Hallauer A R, Russell W A . Estimates of maturity and its inheritance in maize. Crop Science, 1962,2(4):289-294.
doi: 10.2135/cropsci1962.0011183X000200040006x
[7] Hicks D R, Geadelmann J L, Peterson R H . Drying rates of frosted maturing maize. Agronomy Journal, 1976,68(3):452-455.
doi: 10.2134/agronj1976.00021962006800030004x
[8] Cross H Z . A selection procedure for ear drying-rates in early maize. Euphytica, 1985,34(2):409-418.
doi: 10.1007/BF00022936
[9] 张立国, 王振华, 张林 , 等. 玉米生理成熟后籽粒脱水速率的配合力分析. 作物杂志, 2007(3):52-55.
[10] Eyherabide G H, Hallauer A R . Reciprocal full-sib recurrent selection in maize I:direct and indirect response. Crop Science, 1991,31(4):952-959.
doi: 10.2135/cropsci1991.0011183X003100040023x
[11] 吕香玲, 兰进好, 张宝石 . 玉米果穗脱水速率的研究. 西北农林科技大学学报(自然科学版), 2006,34(2):48-52.
[12] 丁佳琦, 王红武, 刘志芳 , 等. 玉米单交种和自交系生理成熟后子粒脱水速率的研究. 作物杂志, 2012(5):26-29.
[13] Hillson M F, Penny L H . Dry materials accumulation and moisture loss during maturation of corn grain. Agronomy Journal, 1965,57(2):150-153.
doi: 10.2134/agronj1965.00021962005700020007x
[14] Nass H G, Crane P L . Effect of endosperm mutants on drying rate in corn (Zea mays L. ). Crop Science, 1970,10(2):141-144.
doi: 10.2135/cropsci1970.0011183X001000020005x
[15] 李凤海, 郭佳丽, 于涛 . 不同熟期玉米杂交种及其亲本子粒脱水速率的比较研究. 玉米科学, 2012,20(6):17-20.
[16] 王振华, 张忠臣, 常华章 , 等. 黑龙江省38个玉米自交系生理成熟期及子粒自然脱水速率的分析. 玉米科学, 2001,9(2):53-55.
[17] Cavalieri A J, Smith O S . Grain filling and field drying of a set of maize hybrid released from 1930 to 1982. Crop Science, 1985,25(5):856-860.
doi: 10.2135/cropsci1985.0011183X002500050031x
[18] 刘思奇, 钟雪梅, 史振声 . 玉米果穗各部性状对籽粒含水量和脱水速率的影响. 江苏农业科学, 2016,44(8):130-132.
[19] 郭佳丽, 吕志尧, 吕颖颖 . 玉米粒部性状对子粒脱水速率的影响. 玉米科学, 2014,22(4):33-38.
[20] 刘艳秋, 李明顺, 李新海 , 等. 1970s-2000s玉米主栽品种灌浆与脱水速率研究. 玉米科学, 2015,23(1):85-91.
[21] Cross H Z, Kabir K M . Evaluation of field dry-down rates in early,maize. Crop Science, 1989,29(1):54-58.
doi: 10.2135/cropsci1989.0011183X002900010012x
[22] 张文杰, 王永宏, 王克如 , 等. 不同玉米品种子粒脱水速率研究. 作物杂志, 2016(1):76-81.
[23] 雷蕾, 王威振, 方伟 , 等. 影响夏玉米生理成熟后子粒脱水的相关因素分析. 玉米科学, 2016,24(3):103-109.
[1] Su Guihua,Li Chunlei,Su Yichen. Evaluation of 22 Main Popularized Varieties by Variety Regional Trails in Jilin Province [J]. Crops, 2018, 34(5): 63-70.
[2] Wu Ronghua,Zhuang Kezhang,Liu Peng,Zhang Chunyan. Response of Summer Maize Yield to Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[3] Li Shaokun,Zhang Wanxu,Wang Keru,Han Dongsheng,Yang Xiaoxia,Chen Yongsheng,Yu Wanbing,Liu Chaowei,Zhang Guoqiang,Liu Fenghe,Chen Jianglu,Yang Jingjing,Li Lulu,Xie Ruizhi,Hou Peng,Ming Bo. Study on Maize Mechanical Grain Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[4] Gao Wenjun,Yang Guoyi,Gao Xinzhong,Yu Zhu,Xu Qingfang,Yuan Xiangyang,Sun Yaowu. The Effects of Nitrogen, Phosphorus, or Potassium Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[5] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia [J]. Crops, 2018, 34(4): 149-153.
[6] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang [J]. Crops, 2018, 34(4): 62-68.
[7] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties [J]. Crops, 2018, 34(4): 79-83.
[8] Shaokun Li,Keru Wang,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Ruizhi Xie,Peng Hou,Bo Ming. The Quality of Mechanical Harvesting Maize Grain and Its Influencing Factors in Central Liaoning Province [J]. Crops, 2018, 34(3): 162-167.
[9] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[10] Lei Shi,Guohong Wang,Yanbo Wang,Dawei Wang,Haiyan Zhao. Preliminary Study on Grain Dehydration Rate of Maize Hybrids and Their Parents [J]. Crops, 2018, 34(3): 84-89.
[11] Keru Wang,Shaokun Li,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Lulu Li,Ruizhi Xie,Peng Hou,Bo Ming. Screening Maize Varieties Suitable for Mechanical Harvesting Grain in the Central Liaoning Province [J]. Crops, 2018, 34(3): 97-102.
[12] Jingjing Yang,Jianglu Chen,Ruizhi Xie,Xiaowei Zhang,Bianhong Ding,Xinming Wu,Shaokun Li,Dongfang Li. Effects of Seed Weight Difference on the Evenness of Related Germination Indexes in Maize [J]. Crops, 2018, 34(3): 180-184.
[13] Lulu Li,Ruizhi Xie,Keru Wang,Bo Ming,Peng Hou,Shaokun Li. Effects of Peeling Husk on Grain Dehydration of Maize [J]. Crops, 2018, 34(2): 114-117.
[14] Rui Li,Jianrong Bai,Xiuhong Wang,Congzhuo Zhang,Xiaomei Zhang,Lei Yan,Ruijuan Yang. Population Genetic Diversity of 144 Sweet Maizes [J]. Crops, 2018, 34(2): 17-24.
[15] Zhongnan Li,Yueren Wang,Shenghui Wu,Haitao Qu,Zhengxue Xu,Guangfa Li. Factor Analysis on GCA Effect Value of Main Traits of Maize [J]. Crops, 2018, 34(2): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .