Crops ›› 2019, Vol. 35 ›› Issue (3): 150-154.doi: 10.16035/j.issn.1001-7283.2019.03.024

Previous Articles     Next Articles

Effects of Exogenous Selenium on the Growth and Development of Tartary Buckwheat and Selenium Content in Grains

Song Lifang,Feng Meichen,Zhang Meijun,Xiao Lujie,Wang Chao,Yang Wude,Song Xiaoyan   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2018-10-11 Revised:2018-12-22 Online:2019-06-15 Published:2019-06-12
  • Contact: Xiaoyan Song

Abstract:

In order to study the effects of exogenous selenium on the growth and development of tartary buckwheat and selenium content in grains at the flowering stage, different concentrations of sodium selenite (0, 2.5, 5.0, 10.0, 20.0mg/L) were sprayed on the field of tartary buckwheat.The changes of dry biomass, leaf area index, chlorophyll content, yield and selenium content of the aboveground at 5, 10, 15 and 35d after spraying selenium were analyzed. The results showed: (1) Exogenous selenium can significantly increase the dry biomass, leaf area index and chlorophyll content of tartary buckwheat at Se1 (2.5mg/L) level; (2) At the level of Se2 (5.0mg/L), the yield of tartary buckwheat significantly increased by 13.49% compared with the control; (3) Selenium application increased the selenium content of tartary buckwheat grain, and the selenium content of tartary buckwheat grain increased with the increase of selenium concentration. In summary, an appropriate amount of exogenous selenium can promote the growth and development of tartary buckwheat, increase yield and selenium content of grain.

Key words: Tartary buckwheat, Sodium selenite, Yield, Grain selenium content

Fig.1

Effects of selenium spraying on the aboveground biomass of tartary buckwheat Different lowercase letters represent significant difference at 5% level. The same below"

Fig.2

Effects of selenium spraying on the leaf area index of tartary buckwheat"

Fig.3

Effects of selenium spraying on the chlorophyll content of tartary buckwheat"

Table 1

Effects of selenium spraying on 1000-grain weight, grain yield and selenium content in grain"

处理
Treatment
千粒重(g)
1000-grain weight
子粒产量(kg/hm2)
Grain yield
子粒硒含量(mg/kg)
Grain selenium content
Se0 21.93±0.13cC 2 472.3±7.47cC 0.15±0.02eE
Se1 23.00±0.05bB 2 723.4±4.30bB 0.27±0.01dD
Se2 23.67±0.06aA 2 805.9±7.17aA 0.38±0.01cC
Se3 22.92±0.15bB 2 499.0±2.38cC 0.57±0.03bB
Se4 20.38±0.12dD 2 065.5±6.10dD 0.78±0.04aA
[1] 唐新欣, 贺蓉 . 中国缺硒状况的调查. 医药世界, 2002(6):22-24.
[2] 沈荣明 . 硒的营养功能及富硒产品的开发前景. 现代食品, 2016(14):24-25.
[3] Chen L, Yang F, Xu J , et al. Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. Journal of Agricultural & Food Chemistry, 2002,50(18):5128-5130.
[4] Gailer J . Chronic toxicity of As(Ⅲ) in mammals: The role of (GS)2AsSe - . Biochimie, 2009,91(10):1268-1272.
doi: 10.1016/j.biochi.2009.06.004
[5] 吴永尧, 彭振坤 . 植物对硒的吸收及其效应. 湖北民族学院学报(自然科学版), 1997(3):10-13.
[6] 聂薇, 李再贵 . 苦荞麦营养成分和保健功能. 粮油食品科技, 2016,24(1):40-45.
[7] Bonafaccia G, Marocchini M, Kreft I . Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 2003,80(1):9-15.
doi: 10.1016/S0308-8146(02)00228-5
[8] Christa K, Soral-Śmietana M . Buckwheat grains and buckwheat products-nutritional and prophylactic value of their components-a review. Czech Journal of Food Sciences, 2003,26(3):153-162.
[9] Guo X, Zhu K, Zhang H , et al. Anti-tumor activity of a novel protein obtained from tartary buckwheat. International Journal of Molecular Sciences, 2010,11(12):5201-5211.
doi: 10.3390/ijms11125201
[10] 唐巧玉, 周毅峰, 李程 , 等. 硒处理对荞麦早期生长发育的影响. 湖北民族学院学报(自然科学版), 2004,22(2):5-7.
[11] 田秀英, 王正银 . 硒对苦荞产量、营养与保健品质的影响. 作物学报, 2008,34(7):1266-1272.
[12] 刘睿 . 硒对苦荞营养效应的研究. 重庆:西南大学, 2007.
[13] Ljerka O, Samo K, Ivan K , et al. Distribution of selenium and phenolics in buckwheat plants grown from seeds soaked in Se solution and under different levels of UV-B radiation. Food Chemistry, 2008,110(3):691-696.
doi: 10.1016/j.foodchem.2008.02.073
[14] Petra C, Ljerka O, Ivan K , et al. Extraction of Se species in buckwheat sprouts grown from seeds soaked in various Se solutions. Food Chemistry, 2010,123(3):941-948.
doi: 10.1016/j.foodchem.2010.04.063
[15] Jiang Y, Zeng Z H, Bu Y , et al. Effects of selenium fertilizer on grain yield,Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil & Environment, 2015,61(8):371-377.
[16] Golob A, Stibilj V, Kreft I , et al. The feasibility of using tartary buckwheat as a Se-containing food material. Journal of Chemistry, 2015: 246042.
[17] Stibilj V, Kreft I, Smrkolj P , et al. Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.)seeds by foliar fertilisation. European Food Research and Technology, 2004,219(2):142-144.
[18] Smrkolj P, Stibilj V, Kreft I , et al. Selenium species in buckwheat cultivated with foliar addition of Se(Ⅵ) and various levels of UV-B radiation. Food Chemistry, 2006,96(4):675-681.
doi: 10.1016/j.foodchem.2005.05.002
[19] Vogrincic M, Cuderman P, Kreft I , et al. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench). Analytical Sciences, 2009,25(11):1357-1363.
doi: 10.2116/analsci.25.1357
[20] 吴杨周, 陈健, 胡正华 , 等. 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响. 环境科学, 2016,37(1):280-287.
[21] 武改红, 王超, 赵佳佳 , 等. 基于多元统计方法的冬小麦叶面积指数光谱估测. 生态学杂志, 2017,36(9):2665-2670.
[22] Sartory D P, Grobbelaar J U . Extraction of chlorophylla from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 1984,114(3):177-187.
doi: 10.1007/BF00031869
[23] Ying J, Xiaomin F, Yadong Y , et al. Performance of common buckwheat (Fagopyrum esculentum M.) supplied with selenite or selenate for selenium biofortification in northeastern China. The Crop Journal, 2018,6(4):386-393.
doi: 10.1016/j.cj.2018.03.003
[24] 刘斌 . 基于敏感波段筛选的多源遥感数据作物生物量估算研究. 北京:中国农业科学院, 2016.
[25] Deng X, Liu K, Li M , et al. Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crops Research, 2017,211:165-171.
doi: 10.1016/j.fcr.2017.06.008
[26] 张妮, 李琦, 张栋 , 等. 外源硒对滴灌小麦籽粒硒含量及产量的影响. 麦类作物学报, 2015,35(7):995-1001.
[27] 许自成, 邵惠芳, 孙曙光 , 等. 土壤施硒对烤烟生理指标的影响. 生态学报, 2011,31(23):7179-7187.
[28] 周勋波, 吴海燕, 张惠君 , 等. 喷施硒肥对大豆生长发育和生理生态参数的影响. 华北农学报, 2004,19(4):77-80.
doi: 10.3321/j.issn:1000-7091.2004.04.021
[29] 吴季蓉, 王宏富 . 不同生育时期喷施硒肥对谷子农艺性状及产量的影响. 山西农业科学, 2018,46(4):595-598,619.
[30] Djanaguiraman M, Devi D D, Shanker A K , et al. Selenium-an antioxidative protectant in soybean during senescence. Plant & Soil, 2005,272(1/2):77-86.
[31] 穆婷婷, 杜慧玲, 张福耀 , 等. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017,50(1):51-63.
[32] 蒋方山, 张海军, 吕连杰 , 等. 叶面喷施亚硒酸钠对黑粒小麦籽粒硒含量、产量及品质的影响. 麦类作物学报, 2018(12):1-8.
[33] Hawkesford M J, Zhao F J . Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 2007,46(3):282-292.
doi: 10.1016/j.jcs.2007.02.006
[34] 穆婷婷, 杜慧玲, 景小兰 , 等. 外源硒对谷子产量因子及硒含量的影响. 作物杂志, 2017(1):73-78.
[35] 李根林, 高红梅 . 喷施亚硒酸钠对小麦产量的影响. 中国农学通报, 2009,25(18):253-255.
[1] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[2] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[3] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao [J]. Crops, 2019, 35(3): 37-41.
[4] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province [J]. Crops, 2019, 35(3): 106-111.
[5] Gao Tongmei,Li Feng,Wu Yin,Wei Libin,Wang Dongyong,Tian Yuan,Fei Gaoliang,Wei Shuangling. Effects of Different Irrigation Regimes on Canopy Structure and Population Quality of Sesame [J]. Crops, 2019, 35(3): 162-167.
[6] Zhang Yahong,Wang Furong,Lei Jianming,Wu Junyan,Fan Tiping,Zhang Jianxue. Effects of Sowing Date on the Yield and Quality of Perilla frutescens L.in the Dryland Hills Area [J]. Crops, 2019, 35(3): 168-171.
[7] Feng Xuejin,Guo Xiujuan,Yang Jianchun,Wang Liqin. Effects of Spraying Selenium Fertilizer on Selenium Content, Yield and Quality of Flax Seed [J]. Crops, 2019, 35(3): 155-157.
[8] Ye Weijun,Yang Yong,Zhang Liya,Tian Dongfeng,Zhang Lingling,Zhou Bin. Effects of Nitrogen on Agronomic Traits and Nitrogen Use Efficiency of Mung Bean Cultivar Wankelü 3 [J]. Crops, 2019, 35(3): 137-141.
[9] Tan Qinliang,Zhu Pengjin,Cheng Qin,Li Jiahui,Lü Ping,Pang Xinhua,Zhou Quanguang. Comparison Study on the Yield Components and Quality of Different Sugarcane Varieties (Lines) [J]. Crops, 2019, 35(3): 49-54.
[10] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[11] Cao Liang,Huang Binglin,Wang Mengxue,Zhang Yuxian. Effects of Row Spacing and Number of Seedling Per Hole on Yield and Quality of Rice in Cold Regions [J]. Crops, 2019, 35(3): 91-98.
[12] Dongmei Zhang,Xuefang Huang,Chunxia Jiang,Wei Zhang,Xiaojuan Wang,Huatao Liu,Liuying Yan,Enke Liu,Guangqian Zhai. Effects of Micro-Ridge Film Mulching on Soil Water and Temperature and Yield of Dryland Maize in Cold Areas [J]. Crops, 2019, 35(2): 115-121.
[13] Yufei Zhang,Lizhi Liu,Yuxuan Ma,Xiaochun Wang,Jianjun Dai. Effects of Tillage and Straw Returning Methods on Maize Yield and Potassium Accumulation and Transport [J]. Crops, 2019, 35(2): 122-127.
[14] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[15] Lifeng Dong,Xiaohu Lin,Chunrong Liu,Guishuang Hou,Chunlu Zhang,Jinfeng Fu,Fengbao Wang. Effects of Compound Seed Coating Agents on Pea Growth and Yield [J]. Crops, 2019, 35(2): 185-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[4] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[5] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .
[6] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[7] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[8] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[9] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[10] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .