Crops ›› 2019, Vol. 35 ›› Issue (5): 46-51.doi: 10.16035/j.issn.1001-7283.2019.05.008

Previous Articles     Next Articles

Analysis of Gene Effect on Chlorophyll Content in Maize

Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun   

  1. Lianyungang Academy of Agricultural Sciences, Lianyungang 222006, Jiangsu, China
  • Received:2019-04-11 Revised:2019-06-09 Online:2019-10-15 Published:2019-11-07
  • Contact: Jun Wang

Abstract:

In order to elucidate the inheritance mechanism of chlorophyll content in maize, six generations (P1, P2, F1, BC1, BC2, and F2) from the cross L055×Qi319 were investigated with mixed major gene plus polygene genetic model. The results showed that F1 heterosis showed positive ionophoric dominance and no hyperphilic dominance. The chlorophyll content was controlled by 2 major genes with additive-dominance-epistatic effects and polygene with additive-dominant effects which mainly governed by major genes, and the effect of the non-additive gene effect was much more important than the additive ones. The additive effects of 2 major genes with polygene could decrease the chlorophyll content, while the dominant effect and the epistatic effect increased the chlorophyll content in maize. The major gene heritability of the chlorophyll content in BC1, BC2, and F2 were 74.58%, 78.62% and 20.84%, respectively. The polygene heritability in BC1, BC2, and F2 were 2.84%, 7.69% and 68.11%, respectively.

Key words: Maize, Chlorophyll content, Major gene and polygene, Inheritance

Fig.1

Mean value and the number frequency distribution of SPAD in different generations P1: L055; P2: Qi 319; F1: L055×Qi 319; BC1: L055/Qi 319//L055; BC2: L055/Qi 319//Qi 319; F2: L055/Qi 319"

Table 1

AIC value of different genetic models for chlorophyll content in maize"

模型Model 遗传模式Genetic model AIC值AICvalue 模型Model 遗传模式Genetic model AIC值AICvalue
A-1 1MG-AD 3 917.6206 D MX1-AD-ADI 3 779.8781
A-2 1MG-A 3 909.6739 D-1 MX1-AD-AD 3 840.5276
A-3 1MG-EAD 3 942.1335 D-2 MX1-A-AD 3 845.8130
A-4 1MG-AEND 3 952.4603 D-3 MX1-EAD-AD 3 845.9778
B-1 2MG-ADI 3 824.9578 D-4 MX1-AEND-AD 3 837.2751
B-2 2MG-AD 3 887.6126 E MX2-ADI-ADI 3 785.0419
B-3 2MG-A 4 164.0802 E-1 MX2-ADI-AD 3 766.2186
B-4 2MG-EA 3 894.6424 E-2 MX2-AD-AD 3 837.3779
B-5 2MG-AED 4 136.9777 E-3 MX2-A-AD 3 825.4504
B-6 2MG-EEAD 4 134.9694 E-4 MX2-EA-AD 3 845.8855
C PG-ADI 3 787.8088 E-5 MX2-AED-AD 3 847.9711
C-1 PG-AD 3 850.5962 E-6 MX2-EEAD-AD 3 845.9705

Table 2

Compatibility tests of genetic models for chlorophyll content in maize"

候选模型Candidate model 世代Generation U12 U22 U32 nW2 Dn
C P1 0.0386(0.8442) 0.0314(0.8594) 0.0028(0.9581) 0.0330(>0.05) 0.0191(>0.05)
F1 0.2954(0.5868) 0.5634(0.4529) 0.8054(0.3695) 0.3276(>0.05) 0.0303(>0.05)
P2 0.0065(0.9360) 0.0250(0.8743) 0.1034(0.7478) 0.0208(>0.05) 0.0376(>0.05)
BC1 6.3560(0.0117)* 6.4956(0.0108)* 0.1852(0.6669) 0.6054(<0.05)* 0.0064(>0.05)
BC2 0.7159(0.3975) 1.6245(0.2025) 3.3172(0.0686) 0.4795(<0.05)* 0.0191(>0.05)
F2 0.0668(0.7960) 0.1560(0.6928) 6.6630(0.0098)** 0.3090(>0.05) 0.0223(>0.05)
D P1 0.0386(0.8442) 0.0314(0.8594) 0.0028(0.9581) 0.0330(>0.05) 0.0191(>0.05)
F1 0.2954(0.5868) 0.5634(0.4529) 0.8054(0.3695) 0.3276(>0.05) 0.0303(>0.05)
P2 0.0065(0.9360) 0.0250(0.8743) 0.1034(0.7478) 0.0208(>0.05) 0.0376(>0.05)
BC1 0.0579(0.8099) 0.0074(0.9313) 0.3446(0.5572) 0.0673(>0.05) 0.0066(>0.05)
BC2 0.0380(0.8454) 0.1038(0.7473) 4.1788(0.0409)* 0.4742(<0.05)* 0.0233(>0.05)
F2 0.0330(0.8558) 0.2860(0.5928) 8.0831(0.0045)* 0.3509(>0.05) 0.0227(>0.05)
E P1 0.0386(0.8442) 0.0314(0.8594) 0.0028(0.9581) 0.0330(>0.05) 0.0191(>0.05)
F1 0.2954(0.5868) 0.5634(0.4529) 0.8054(0.3695) 0.3276(>0.05) 0.0303(>0.05)
P2 0.0065(0.9360) 0.0250(0.8743) 0.1034(0.7478) 0.0208(>0.05) 0.0376(>0.05)
BC1 0.0168(0.8969) 0.0043(0.9478) 0.0576(0.8104) 0.0529(>0.05) 0.0050(>0.05)
BC2 0.0363(0.8489) 0.1069(0.7437) 4.1841(0.0408)* 0.4731(<0.05)* 0.0235(>0.05)
F2 0.0206(0.8859) 0.2734(0.6010) 7.0075(0.0081)** 0.3313(>0.05) 0.0214(>0.05)
E-1 P1 1.5271(0.2165) 1.2009(0.2731) 0.1621(0.6872) 0.1975(>0.05) 0.0230(>0.05)
F1 1.0542(0.3045) 1.2855(0.2569) 0.3121(0.5764) 0.4274(>0.05) 0.0294(>0.05)
P2 0.0055(0.9407) 0(0.9954) 0.0969(0.7556) 0.0196(>0.05) 0.0401(>0.05)
BC1 0.0611(0.8048) 0.0252(0.8739) 0.1041(0.7470) 0.0553(>0.05) 0.0037(>0.05)
BC2 0.0962(0.7564) 0.1059(0.7448) 0.0101(0.9199) 0.0695(>0.05) 0.0086(>0.05)
F2 0.0340(0.8536) 1.2530(0.2630) 14.1609(0.0002)* 0.4556(>0.05) 0.0366(>0.05)

Table 3

Estimated value of genetic parameters of the 1st order genetic parameter for chlorophyll content in maize"

一阶遗传参数1st order genetic parameter 估计值Estimated value
m 60.7862
da -4.7340
db -4.7340
ha 1.3766
hb 2.9993
ha/da -0.2908
hb/db -0.6336
i 0.5729
jab 1.3855
jba 8.6008
l -8.5288
[d] -0.1806
[h] 5.3785
[h]/[d] -29.7813

Table 4

Estimated value of genetic parameters of the 2nd order genetic parameter for chlorophyll content in maize"

二阶遗传参数
2nd order genetic parameter
世代
Generation
估计值
Estimated value
σp2 BC1 26.2527
σmg2 23.0235
σpg2 0.8770
hmg2(%) 74.58
hpg2(%) 2.84
σp2 BC2 50.9196
σmg2 40.0330
σpg2 3.9176
hmg2(%) 78.62
hpg2(%) 7.69
σp2 F2 63.0763
σmg2 13.1451
σpg2 42.9676
hmg2(%) 20.84
hpg2(%) 68.11
h2(%) 84.23
[1] 于振文 . 作物栽培学各论. 北京: 中国农业出版社, 2003: 92-93.
[2] 赵久然, 王帅, 李明 , 等. 玉米育种行业创新现状与发展趋势. 植物遗传资源学报, 2018,19(3):435-446.
[3] 许大全 . 光合速率、光合效率与作物产量. 生物学通报, 1999(8):8-10.
[4] 周艳敏, 张春庆 . 玉米生育后期光合特性的遗传分析. 中国农业科学, 2008,41(7):1900-1907.
[5] 高祺, 李明, 朴琳 , 等. 拔节期弱光和渍水胁迫对春玉米光合作用、根系生长及产量的影响. 江苏农业学报, 2018,34(6):81-91.
[6] 张斌斌, 姜卫兵, 韩健 , 等. 作物光合特性在杂种优势评价中的应用研究进展. 江西农业学报, 2009,21(8):44-48.
[7] 汤继华, 谢惠玲, 黄绍敏 , 等. 缺氮条件下玉米自交系叶绿素含量与光合效率的变化. 华北农学报, 2005(5):10-12.
[8] Gitelson A A, Yi P, Arkebauer T J , et al. Relationships between gross primary production,green LAI,and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment, 2014,144(4):65-72.
[9] Su W C, Sun L L, Wu R H , et al. Effect of imazapic residues on photosynthetic traits and chlorophyll fluorescence of maize seedlings. Biologia Plantarum, 2017,55(2):294-300.
[10] Gitelson A A, Peng Y, Vina A , et al. Efficiency of chlorophyll in gross primary productivity:A proof of concept and application in crops. Journal of Plant Physiology, 2016,201:101-110.
[11] Wagle P, Zhang Y, Jin C , et al. Comparison of solar-induced chlorophyll fluorescence,light-use efficiency,and process-based GPP models in maize. Ecological Applications, 2016,26(4):1211-1222.
[12] Bielinis E, Weronika J, Robakowski P . Modelling of the relationship between the SPAD values and photosynthetic pigments content in Quercus petraea and Prunus serotina leaves. Dendrobiology, 2015,73:125-134.
[13] 王爱玉, 张春庆, 吴承来 , 等. 玉米叶绿素含量快速测定方法研究. 玉米科学, 2008,16(2):97-100.
[14] Ding L, Wang K J, Jiang G M , et al. Photosynthetic rate and yield formation in different maize hybrids. Biologia Plantarum, 2007,51(1):165-168.
[15] 郑强, 王志敏, 蔡永旺 , 等. 夏玉米叶片叶绿素含量的时空动态及其与植株含氮率关系的研究. 玉米科学, 2008,16(6):75-78.
[16] 史典义, 刘忠香, 金危危 . 植物叶绿素合成、分解代谢及信号调控. 遗传, 2009,31(7):698-704.
doi: DOI: 10.3724/SP.J.1005.2009.00698
[17] 刘开昌, 董树亭, 赵海军 , 等. 我国玉米自交系叶片保绿性及其与产量的关系. 作物学报, 2009,35(9):1662-1671.
doi: 10.3724/SP.J.1006.2009.01662
[18] 赵延明, 董树亭, 高宏伟 . 玉米叶片叶绿素含量遗传主效应及其与环境互作的遗传分析. 华北农学报, 2006,21(4):1-4.
doi: 10.3321/j.issn:1000-7091.2006.04.001
[19] 赵延明, 董树亭, 严敏 , 等. 玉米叶片叶绿素含量的发育遗传动态及环境互作效应分析. 中国生态农业学报, 2008(3):649-654.
[20] 王利强, 包和平, 王晓波 . 糯玉米自交系光合特性的配合力分析. 河南农业科学, 2011,40(4):41-44.
[21] 刘鹏飞, 蒋锋, 陈青春 , 等. 鲜食型甜玉米叶片叶绿素含量的遗传分析. 安徽农业大学学报, 2013(1):134-138.
[22] 刘宗华, 谢惠玲, 王春丽 , 等. 氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析. 植物营养与肥料学报, 2008,14(5):845-851.
doi: 10.11674/zwyf.2008.0505
[23] Šimić D, Lepeduš H, Jurković V , et al. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments. Journal of Integrative Plant Biology, 2014,56(7):695-708.
[24] Cai H, Chu Q, Yuan L , et al. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding, 2012,30(1):251-266.
[25] 王亚辉, 徐淑兔, 郑倩文 , 等. 不同光照条件下玉米苗期叶绿素指数的遗传分析. 分子植物育种, 2018,16(4):1236-1243.
[26] 滕守振, 汪海, 梁海生 , 等. 玉米叶片叶绿素含量的全基因组关联性分析. 生物技术通报, 2017(4):98-103.
[27] 盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[28] 盖钧镒 . 植物数量性状遗传体系的分离分析方法研究. 遗传, 2005,27(1):130-136.
[29] 曹锡文, 刘兵, 章元明 . 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
[30] 欧志英, 彭长连, 林桂珠 . 田间条件下超高产水稻培矮64S/E32及其亲本旗叶的光合特性. 作物学报, 2005,31(2):209-214.
[31] 张远航, 师赵康, 赵泽群 , 等. 玉米杂交种及其亲本灌浆期棒三叶光合特性差异比较分析. 山西农业科学, 2018,46(6):894-898.
[32] 张永丽, 肖凯, 李雁鸣 . 不同组合杂种小麦旗叶光合优势特点的研究. 华北农学报, 2004(1):63-66.
[33] 赵明, 王美云, 李少昆 . 玉米杂交种与亲本主要光合性状的比较. 华北农学报, 1997,12(2):39-43.
doi: 10.3321/j.issn:1000-7091.1997.02.008
[34] 包和平, 毕成龙, 李颖 , 等. 爆裂玉米叶片叶绿素含量的混合遗传分析. 上海农业学报, 2011,27(2):82-86.
[35] Muhammad I, Sun J X, Liu Y , et al. Genetic analysis of chlorophyll content in maize by mixed major and polygene models. Genetika, 2014,46(3):1037-1046.
[36] 李忠南, 王克伟, 王越人 , 等. 玉米品种先玉335苗期叶绿素SPAD值的遗传分析. 作物杂志, 2016(4):101-104.
[1] Hua Yuhui,Gao Zhiqiang. Hyperspectral Estimation of SPAD Values in Different Varieties of Autumn Maize [J]. Crops, 2019, 35(5): 173-179.
[2] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain [J]. Crops, 2019, 35(5): 143-150.
[3] Dong Zhiqiang,Wang Mengmeng,Li Hongyi,Xue Xiaoping,Pan Zhihua,Hou Yingyu,Chen Chen,Li Nan,Li Manhua. Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province [J]. Crops, 2019, 35(5): 159-165.
[4] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels [J]. Crops, 2019, 35(5): 28-36.
[5] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene [J]. Crops, 2019, 35(5): 37-40.
[6] Wan Xiaoju,Zhang Guoqiang,Wang Keru,Xie Ruizhi,Shen Dongping,Chen Jianglu,Liu Chaowei,Li Shaokun. Effects of Plastic Film Mulching and Drip Irrigation on Spring Maize in Northern Xinjiang [J]. Crops, 2019, 35(4): 107-112.
[7] Zhou Yun,Li Yongmei,Fan Maopan,Wang Zilin,Xu Zhi,Zhang Dan,Zhao Jixia. Effects of Nitrogen in Organic Manure Replacing Chemical Nitrogenous Fertilizer on Aggregates of Red Soil, Maize Yield and Quality [J]. Crops, 2019, 35(4): 125-132.
[8] Wang Nan,Li Mu,Lu Ming,Gao Tingting,Zheng Shubo,Zhang Zhijun,Liu Wenguo. Application Analysis of Pioneer USA Maize Varieties in China [J]. Crops, 2019, 35(4): 24-29.
[9] Guo Hongliang,Liu Yongzhong,Chang Haixia,Jin Kunpeng,Li Wanxing,Cao Jinjun,Li Dan,Li Xiaoxia. Multiple Analysis of Ear Characters and Grain Water Content in Maize Harvest Period in Middle-Late-Maturing Regions of Shanxi Province [J]. Crops, 2019, 35(4): 37-41.
[10] Ping Wenjing,Guo Yuan,Huang Yaqun,Chen Jingtang,Zhu Liying,Zhao Yongfeng,Guo Jinjie. Study on the Absorption and Distribution of Zinc and Iron between Maize Hybird and Its Parents [J]. Crops, 2019, 35(4): 49-54.
[11] Guo Qingrui,Wang Mengfei,Guo Fengqin,Yin Jianjun,Zhang Xiaojuan,Wang Li. Comprehensive Evaluation of Grain and Forage Maize Varieties in High Latitude and Cold Area of Shanxi Province [J]. Crops, 2019, 35(4): 61-68.
[12] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize [J]. Crops, 2019, 35(3): 118-125.
[13] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology [J]. Crops, 2019, 35(3): 24-28.
[14] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
[15] Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao. Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing [J]. Crops, 2019, 35(3): 126-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .