Crops ›› 2019, Vol. 35 ›› Issue (4): 37-41.doi: 10.16035/j.issn.1001-7283.2019.04.006

Previous Articles     Next Articles

Multiple Analysis of Ear Characters and Grain Water Content in Maize Harvest Period in Middle-Late-Maturing Regions of Shanxi Province

Guo Hongliang,Liu Yongzhong,Chang Haixia,Jin Kunpeng,Li Wanxing,Cao Jinjun,Li Dan,Li Xiaoxia   

  1. Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046001, Shanxi, China
  • Received:2019-01-08 Revised:2019-04-03 Online:2019-08-15 Published:2019-08-06
  • Contact: Yongzhong Liu

Abstract:

In this paper, correlations and path analysis had been done between main ear characters and grain moisture in 20 maize varieties, which have large area popularization and basically the same maturity stages growing at the middle-late- maturing regions of Shanxi province. Correlation analysis showed that grain water content in harvest stage had a significant positive correlation with ear diameter, axis diameter, grain thickness, area of bracts moisture content of bracts, and had a positive correlation with kernel width, but a significant negative correlation with kernels per row. Path analysis showed that main ear characters had direct effects on grain water content in harvest stage, it followed the order of ear rows>ear diameter>moisture content of bracts=grain thickness>axis diameter>kernels per row>kernel width>ear length>area of bracts. Therefore in order to breed a new species with lower moisture content of kernels at harvest stage, we should emphasize on genotypes which have smaller area of bracts, lower moisture content of bracts, slighter ear width and axis diameter, thinner grain thickness, narrower kernel width, and more kernels per row.

Key words: Maize, Harvest stage, Moisture content of kernels, Multiple analysis

Table 1

Comparisons of grain moisture content and related characters of different maize varieties at harvest stage"

性状Trait 极小值Min 极大值Max 均值Mean 变异系数Coefficient of variation (%)
穗行数(X1) Ear rows 14.82 18.26 16.30±0.67 4.11
行粒数(X2) Kernels per row 34.92 42.25 38.13±2.21 5.76
穗长(X3) Ear length (cm) 18.13 21.37 19.79±0.76 3.83
穗粗(X4) Ear diameter (cm) 4.77 5.25 4.94±0.14 2.87
轴粗(X5) Axis diameter (cm) 2.47 2.94 2.64±0.16 5.97
粒宽(X6) Kernel width (cm) 0.81 0.94 0.88±0.03 3.63
粒厚(X7) Grain thickness (cm) 0.37 0.44 0.41±0.02 4.32
粒长(X8) Kernel length (cm) 1.02 1.22 1.09±0.04 4.13
苞叶总面积(X9) Area of bracts (cm2) 191.33 288.24 230.57±28.24 12.25
苞叶含水率(X10) Moisture content of bracts (%) 30.97 41.86 35.54±3.07 8.65
子粒含水率(X11) Moisture content of kernels (%) 21.14 28.13 25.11±1.80 7.36

Table 2

Correlation analysis between grain moisture content of maize and 10 correlative characters at harvest stage"

性状Trait X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X2 -0.217
X3 -0.337 -0.547*
X4 -0.300 -0.460* -0.059
X5 -0.529* -0.565** -0.304 0.786**
X6 -0.343 -0.665** -0.318 0.377 0.293
X7 -0.212 -0.777** -0.083 0.816** 0.688** 0.552*
X8 -0.228 -0.138 -0.124 0.031 0.152 0.238 0.040
X9 -0.270 -0.699** -0.227 0.695** 0.672** 0.429 0.798** 0.168
X10 -0.344 -0.663** -0.150 0.727** 0.821** 0.334 0.786** 0.171 0.859**
X11 -0.142 -0.780** -0.178 0.837** 0.778** 0.503* 0.922** 0.080 0.828** 0.857**

Table 3

Path coefficient of agronomic characters to grain moisture content at harvest stage"

通径Path
Xi→Y
直接作用
Direct effect
间接作用Indirect effect
总和Total →X1 →X2 →X3 →X4 →X5 →X6 →X7 →X9 →X10
X1 -0.2733 0.4153 0.0267 0.0201 0.0787 0.1081 0.0361 0.0539 0.0044 0.0873
X2 -0.1234 -0.6563 0.0592 -0.0327 -0.1207 -0.1153 -0.0700 -0.1971 -0.0115 -0.1682
X3 -0.0597 -0.1182 0.0921 -0.0675 0.0154 -0.0620 -0.0335 -0.0210 -0.0037 -0.0380
X4 0.2624 0.5745 -0.0820 0.0568 -0.0035 0.1604 0.0397 0.2072 0.0114 0.1845
X5 0.2041 0.5742 -0.1447 0.0697 0.01810 0.2062 0.0309 0.1747 0.0110 0.2083
X6 0.1053 0.3980 -0.0937 0.0820 0.0190 0.0990 0.0599 0.1400 0.0070 0.0848
X7 0.2538 0.6680 -0.0580 0.0958 0.0049 0.2142 0.1405 0.0581 0.0131 0.1994
X9 0.0164 0.8113 -0.0737 0.0862 0.0136 0.1823 0.1372 0.0452 0.2026 0.2179
X10 0.2538 0.6038 -0.0940 0.0818 0.0089 0.1908 0.1676 0.0352 0.1994 0.0141
[1] 杨红旗, 路凤银, 郝仰坤 , 等. 中国玉米产业现状与发展问题研讨. 中国农学通报, 2011,27(6):368-373.
[2] 马玉平, 孙琳丽, 俄有浩 , 等. 预测未来40年气候变化对我国玉米产量的影响. 应用生态学报, 2015,26(1):224-232.
[3] 刘保花, 陈新平, 崔振岭 , 等. 三大粮食作物产量潜力与产量差研究进展. 中国生态农业学报, 2015,23(5):525-534.
[4] 周宝元, 孙雪芳, 丁在松 , 等. 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响. 中国农业科学, 2017,50(11):2129-2140.
[5] 郑宾, 赵伟, 徐铮 , 等. 不同耕作方式与氮肥类型对夏玉米光合性能的影响. 作物学报, 2017,43(6):925-934.
[6] 李锐, 白建荣, 程宇坤 , 等. 山西省审定玉米品种亲本自交系的遗传多样性及杂优类群分析. 作物杂志, 2015,11(5):55-62.
[7] 易克传, 朱德文, 张新伟 , 等. 含水率对玉米籽粒机械化直接收获的影响. 中国农机化学报, 2016,37(11):78-80.
[8] 李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017,35(3):265-271.
[9] 柴宗文, 王克如, 郭银巧 , 等. 玉米机械粒收质量现状及其含水率的关系. 中国农业科学, 2017,50(11):2036-2043.
[10] 李璐璐, 薛军, 谢瑞芝 , 等. 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018,44(12):1747-1754.
[11] 李璐璐, 雷晓鹏, 谢瑞芝 , 等. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50(11):2044-2051.
[12] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50(11):2018-2026.
[13] 李淑芳, 张春宵, 路明 , 等. 玉米籽粒自然脱水速率研究进展. 分子植物育种, 2014,12(4):825-829.
[14] 吕香玲, 兰进好, 张宝石 , 等. 玉米果穗脱水速率的研究. 西北农林科技大学学报(自然科学版), 2006,34(2):48-52.
[15] 张林, 张宝石, 王霞 , 等. 玉米收获期籽粒含水量与主要农艺性状相关分析. 东北农业大学学报, 2009,40(10):9-12.
[16] 谭福忠, 韩翠波, 皱双利 , 等. 极早熟玉米品种籽粒脱水特性的初步研究. 中国农学通报, 2008,24(7):161-168.
[17] Cross H Z, Kabir K M . Evaluation of field dry-down rates in early maize. Crop Science, 1989,29(1):54-58.
[18] Troyer A F, Ambrose W B . Plant characteristics affecting field drying rate of ear corn. Crop Science, 1971(11):529-531.
[19] Kang M S, Zuber M S, Colbert T R , et al. Effect of certain agronomic traits on and relationship between rates of grain moisture reduction and grain fill during filling period in maize. Field Crop Research, 1986,14(4):339-346.
[20] Kang M S, Zuber M S . Combining ability for grain moisture,husk moisture,and maturity in maize with yellow and white endosperms. Crop Science, 1989,29(3):689-692.
[21] 闫淑琴, 苏俊, 李春霞 , 等. 玉米籽粒灌浆、脱水速率的相关与通径分析. 黑龙江农业科学, 2007(4):1-4.
[22] 李璐璐, 谢瑞芝, 范盼盼 , 等. 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016,24(2):57-61.
[23] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50(11):2027-2035.
[24] 张树光, 冯学民, 高树仁 , 等. 玉米成熟期籽粒含水量与果穗性状的关系. 中国农学通报, 1994(2):15-17.
[25] 孙生林, 张树光, 薛继生 , 等. 玉米子粒含水量与果穗性状相关性的研究. 黑龙江八一农垦大学学报, 1993,7(1):12-17.
[26] 李艳杰, 史纪明, 鞠成梅 , 等. 玉米籽粒水分与品种性状相关性研究初报. 玉米科学, 2000,8(4):37-38.
[27] 刘思奇, 钟雪梅, 史振声 . 玉米果穗各部性状对籽粒含水量和脱水速率的影响. 江苏农业科学, 2016,44(8):130-132.
[28] 李璐璐, 明博, 谢瑞芝 , 等. 玉米品种穗部性状差异及其对籽粒脱水的影响. 中国农业科学, 2018,51(10):1855-1867.
[29] Kang M S, Zuber M S, Horrocks R D . An electronic probe for estimating ear moisture content of maize. Crop Science, 1978,18(6):1083-1084.
[1] Wan Xiaoju,Zhang Guoqiang,Wang Keru,Xie Ruizhi,Shen Dongping,Chen Jianglu,Liu Chaowei,Li Shaokun. Effects of Plastic Film Mulching and Drip Irrigation on Spring Maize in Northern Xinjiang [J]. Crops, 2019, 35(4): 107-112.
[2] Zhou Yun,Li Yongmei,Fan Maopan,Wang Zilin,Xu Zhi,Zhang Dan,Zhao Jixia. Effects of Nitrogen in Organic Manure Replacing Chemical Nitrogenous Fertilizer on Aggregates of Red Soil, Maize Yield and Quality [J]. Crops, 2019, 35(4): 125-132.
[3] Wang Nan,Li Mu,Lu Ming,Gao Tingting,Zheng Shubo,Zhang Zhijun,Liu Wenguo. Application Analysis of Pioneer USA Maize Varieties in China [J]. Crops, 2019, 35(4): 24-29.
[4] Ping Wenjing,Guo Yuan,Huang Yaqun,Chen Jingtang,Zhu Liying,Zhao Yongfeng,Guo Jinjie. Study on the Absorption and Distribution of Zinc and Iron between Maize Hybird and Its Parents [J]. Crops, 2019, 35(4): 49-54.
[5] Guo Qingrui,Wang Mengfei,Guo Fengqin,Yin Jianjun,Zhang Xiaojuan,Wang Li. Comprehensive Evaluation of Grain and Forage Maize Varieties in High Latitude and Cold Area of Shanxi Province [J]. Crops, 2019, 35(4): 61-68.
[6] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize [J]. Crops, 2019, 35(3): 118-125.
[7] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology [J]. Crops, 2019, 35(3): 24-28.
[8] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
[9] Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao. Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing [J]. Crops, 2019, 35(3): 126-131.
[10] Wu Jianzhong,Li Suiyan,Lin Hong,Ma Yanhua,Pan Liyan,Li Donglin,Sun Dequan. Genetic Variation and Principal Component Analysis of Silage Maize Quality Traits [J]. Crops, 2019, 35(3): 42-48.
[11] Shi Yaxing,Dong Hui,Lu Baishan,Zhao Jiuran,Fan Yanli,Xu Li,Yu Ainian. Grain Dehydration and Gelatinization Characteristics of Waxy Maize at Different Harvesting Time [J]. Crops, 2019, 35(3): 112-117.
[12] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[13] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[14] Dongmei Zhang,Xuefang Huang,Chunxia Jiang,Wei Zhang,Xiaojuan Wang,Huatao Liu,Liuying Yan,Enke Liu,Guangqian Zhai. Effects of Micro-Ridge Film Mulching on Soil Water and Temperature and Yield of Dryland Maize in Cold Areas [J]. Crops, 2019, 35(2): 115-121.
[15] Yufei Zhang,Lizhi Liu,Yuxuan Ma,Xiaochun Wang,Jianjun Dai. Effects of Tillage and Straw Returning Methods on Maize Yield and Potassium Accumulation and Transport [J]. Crops, 2019, 35(2): 122-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[6] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[7] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[8] Yu Fan,Hongli Wang,Feng He,Dili Lai,Jiajun Wang,Yue Song,Dabing Xiang. Nutritional Quality in Seeds of Tartary Buckwheat Affected by After-Ripening[J]. Crops, 2018, 34(1): 96 -101 .
[9] . [J]. Crops, 2012, 28(5): 76 -81 .
[10] . [J]. Crops, 2011, 27(6): 10 -13 .