Crops ›› 2019, Vol. 35 ›› Issue (5): 89-96.doi: 10.16035/j.issn.1001-7283.2019.05.015

Previous Articles     Next Articles

Effects of Organic Fertilizer Substituting for Chemical Fertilizer on Rice Yield, Soil Fertility and Nitrogen and Phosphorus Loss in Farmland

Ma Fanfan,Xing Sulin,Gan Manqin,Liu Peishi,Huang Yu,Gan Xiaoyu,Ma Youhua   

  1. College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
  • Received:2019-04-08 Revised:2019-07-30 Online:2019-10-15 Published:2019-11-07
  • Contact: Youhua Ma

Abstract:

A field experiment was conducted to study the effects of different propertion of organic fertilizer substituting for chemical fertilizer on rice yield, soil fertility and nitrogen and phosphorus loss in surface runoff in farmland. The results showed that 50% pig manure organic fertilizer substituting for chemical treatment had the highest rice yield, reaching 10 439.66kg/hm 2. Rice yield increased in turn by 100%, 30% and 50% organic fertilizers substituting for chemical fertilizer. Rice yield of pig manure organic fertilizer substituting for chemical fertilizer was higher than that of straw organic fertilizer substituting for chemical fertilizer. Organic fertilizer could improve soil fertility effectively. The highest content of soil organic matter, total nitrogen, available potassium and available phosphorus was shown in 100% organic fertilizer substituting for chemical fertilizer treatment. The single application of chemical fertilizer treatment had the highest total nitrogen (TN) loss and loss rate that was 9.43kg/hm 2 and 4.91%, respectively. With the increase of proportions of organic fertilizers substituting for chemical fertilizers, runoff TN loss and loss rate in rice fields decreased gradually. Compared with 100% organic fertilizer treatment, loss and loss rates of TN of 50% and 30% organic fertilizers substituting for chemical fertilizers increased significantly. However, the difference between the treatments of pig manure organic fertilizer and straw organic fertilizer substituting for chemical fertilizer was not significant. Total phosphorus (TP) loss and loss rate were the highest under the treatment of 100% straw and pig manure organic fertilizer, the TP loss was 1.815kg/hm 2 and 1.732kg/hm 2, respectively, and the TP loss rate was 1.08% and 1.02%, respectively. TP loss of 50% and 30% organic fertilizer substituting for chemical fertilizers gradually decreased, and the loss and loss rate of TP by straw organic fertilizer substituting for chemical fertilizer were higher than that of pig manure organic fertilizer substituting for chemical fertilizer, and there was a significant difference. 50% pig manure organic fertilizer substituting for fertilizer treatment could effectively reduce loss and loss rate of nitrogen in runoff in paddy fields while maintaining high yield and stable yield of rice, and maintain a low level of phosphorus in runoff loss and loss rate. It is an appropriate measures of organic fertilizer substituting for chemical fertilization while sustaining effective utilization of resources and saving fertilizers and having enhanced efficiency.

Key words: Organic fertilizer, Substitution propertion, Soil fertility, Runoff loss, Rice yield

Table 1

Fertilizer application rates of different treatments kg/hm2"

处理
Treatment
猪粪有机肥
Pig manure organic fertilizer
秸秆有机肥
Straw organic fertilizer
尿素
Urea
过磷酸钙
Superphosphate
氯化钾
Potassium chloride
CK 0 0 0 0 0
CF 0 0 417.39 400 137.50
M1 2 866 0 292.17 0 50.10
M2 4 776 0 208.70 0 0
M3 9 552 0 0 0 0
F1 0 2 451 292.17 0 76.22
F2 0 4 085 208.70 0 35.37
F3 0 8 170 0 0 0

Table 2

Effects of organic fertilizer substituting for chemical fertilizer on rice yield and its components"

处理
Treatment
有效穗(×104/hm2)
Effective panicles
每穗粒数
Grains per panicle
结实率(%)
Filled grain rate
千粒重(g)
1000-grain weight
产量(kg/hm2)
Yield
CK 290.10c 129.33c 85.95b 22.89d 5 975.31e
CF 416.85a 162.67a 87.60b 27.73a 10 231.78ab
M1 350.25b 150.00a 87.27b 26.22bc 9 876.05bc
M2 400.20a 159.33a 90.50a 27.94a 10 439.66a
M3 313.50c 142.33b 86.30b 25.87c 9 598.13c
F1 356.25b 156.67a 85.77b 27.29ab 9 339.11c
F2 390.15a 157.33a 87.47b 27.58a 9 443.49c
F3 300.15c 140.00b 84.87c 25.16c 8 969.39d

Table 3

Effects of organic fertilizer substituting for chemical fertilizer on soil nutrient content during the rice season"

处理Treatment 有机质Organic matter (g/kg) 全氮Total nitrogen (g/kg) 有效磷Available phosphorus (mg/kg) 速效钾Available potassium (mg/kg)
CK 21.66e 0.69d 8.16e 150.14f
CF 27.96d 1.20bc 17.68d 194.04e
M1 29.03c 1.18bc 18.37d 219.74cd
M2 30.70bc 1.25b 21.23c 210.17d
M3 33.27a 1.39a 26.90a 291.37a
F1 29.25c 1.13c 17.75d 226.47c
F2 30.01bc 1.21b 20.79c 197.00e
F3 31.14b 1.31a 24.52b 256.98b

Fig.1

Runoff volume dynamicity on field during the rice season in 2018"

Fig.2

Effects of organic fertilizer substituting for chemical fertilizer on runoff TN concentration (a) and TN loss (b) in field during the rice season"

Table 4

Average runoff TN and TP concentrations and total losses under organic fertilization substituting for chemical fertilizer treatments in field during the rice season"

处理
Treatment
平均浓度(mg/L)
Average concentration
流失总量(kg/hm2)
Total loss
TN TP TN TP
CK 1.40d 0.033e 4.73e 0.111e
CF 2.73a 0.063d 9.43a 0.243d
M1 2.62a 0.062d 9.15ab 0.242d
M2 2.49b 0.073c 8.32c 0.281c
M3 2.14c 0.492b 7.39d 1.732b
F1 2.56a 0.062d 9.09b 0.246d
F2 2.36b 0.080c 8.12c 0.292c
F3 2.07c 0.517a 7.11d 1.815a

Fig.3

Effects of organic fertilizer substituting for chemical fertilizer on runoff TP concentration (a) and TP loss (b) in field during the rice season"

Fig.4

Effects of organic fertilizer substituting for chemical fertilizer on runoff TN and TP loss rate in field during the rice season Different lowercase letters indicate significant difference between treatments (P<0.05)"

[1] 李书田, 刘晓永, 何萍 . 当前我国农业生产中的养分需求分析. 植物营养与肥料学报, 2017,23(6):1416-1432.
[2] 朱兆良, 金继运 . 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013,19(2):259-273.
doi: 10.11674/zwyf.2013.0201
[3] 张福锁, 王激清, 张卫峰 , 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008(5):915-924.
[4] 王桂苓, 马友华, 孙兴旺 , 等. 巢湖流域麦稻轮作农田径流氮磷流失研究. 水土保持学报, 2010,24(2):6-10,29.
[5] 习斌, 翟丽梅, 刘申 , 等. 有机无机肥配施对玉米产量及土壤氮磷淋溶的影响. 植物营养与肥料学报, 2015(2):326-335.
[6] 吴美玲, 张绍荣, 龙国 , 等. 有机肥控制稻田氮磷流失风险效果初步研究. 湖北农业科学, 2013(18):4328-4332.
[7] 朱建春, 张增强, 樊志民 , 等. 中国畜禽粪便的能源潜力与氮磷耕地负荷及总量控制. 农业环境科学学报, 2014,33(3):435-445.
[8] 姜利红, 谭力彰, 田昌 , 等. 不同施肥对双季稻田径流氮磷流失特征的影响. 水土保持学报, 2017,31(6):33-38,45.
[9] 唐先干, 秦文婧, 谢金水 , 等. 不同比例猪粪有机肥配施对稻穗不同部位氮含量分布的影响. 南方农业学报, 2018,49(10):1940-1945.
[10] 钱宏兵, 于倩倩, 韩明凯 . 秸秆有机肥对水稻产量及土壤理化性状的影响. 现代农业科技, 2014(23): 48,52.
[11] 郭智, 周炜, 陈留根 , 等. 施用猪粪有机肥对稻麦两熟农田稻季养分径流流失的影响. 水土保持学报, 2013,27(6):21-25,61.
[12] 韩晓飞, 高明, 谢德体 , 等. 有机无机肥配施对紫色土旱坡地土壤无机磷迁移的影响. 水土保持研究, 2017,24(5):39-44.
[13] 纪雄辉, 郑圣先, 刘强 , 等. 施用有机肥对长江中游地区双季稻田磷素径流损失及水稻产量的影响. 湖南农业大学学报(自然科学版), 2006,32(3):283-287.
[14] 金熠, 梁新强, 刘于 , 等. 增施有机肥对稻田田面水磷素形态和径流流失量的影响. 水土保持学报, 2015,29(4):42-47.
[15] 姚金玲, 张克强, 郭海刚 , 等. 不同施肥方式下洱海流域水稻-大蒜轮作体系氮磷径流损失研究. 农业环境科学学报, 2017,36(11):2287-2296.
[16] Liu Y R, Li X, Yu J , et al. Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers. The Journal of Applied Ecology, 2012,23(1):81-86.
[17] Mi W H, Sun Y, Xia S Q , et al. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma, 2018,320:23-29.
[18] Rahimabadi E T, Ansari M H, Nematollahi A R . Influence of cow manure and it′s vermioomposting on the improvement of grain yield and quality of rice (oryza sativa L.) in field conditions. Applied Ecology and Environmental Research, 2018,16(1):97-110.
[19] 孙步旭, 范国荣, 杨子毅 . 碱性过硫酸钾消解紫外分光光度法和连续流动分析法测定水体中总氮的比较研究. 黑龙江环境通报, 2017,41(4):52-55.
[20] 杨子毅, 孙步旭, 李茜 , 等. 钼酸铵分光光度法和连续流动分析法测定水体中总磷的比较研究. 仪器仪表与分析监测, 2015(4):24-27.
[21] 李先, 刘强, 荣湘民 , 等. 有机肥对水稻产量及产量构成因素的影响. 湖南农业科学, 2010(5):64-66.
[22] 吕真真, 吴向东, 侯红乾 , 等. 有机-无机肥配施比例对双季稻田土壤质量的影响. 植物营养与肥料学报, 2017,23(4):904-913.
[23] 田小明, 李俊华, 危常州 , 等. 不同生物有机肥用量对土壤活性有机质和酶活性的影响. 中国土壤与肥料, 2012(1):26-32.
[24] 刘增兵, 束爱萍, 刘光荣 , 等. 有机肥替代化肥对双季稻产量和土壤养分的影响. 江西农业学报, 2018,30(11):35-39.
[25] 邢鹏飞, 高圣超, 马鸣超 , 等. 有机肥替代部分无机肥对华北农田土壤理化特性、酶活性及作物产量的影响. 中国土壤与肥料, 2016(3):98-104.
[26] 陈贵, 赵国华, 张红梅 , 等. 长期施用有机肥对水稻产量和氮磷养分利用效率的影响. 中国土壤与肥料, 2017(1):92-97.
[27] 刘汝亮, 张爱平, 李友宏 , 等. 长期配施有机肥对宁夏引黄灌区水稻产量和稻田氮素淋失及平衡特征的影响. 农业环境科学学报, 2015,34(5):947-954.
[28] 董春华, 高菊生, 曾希柏 , 等. 长期有机无机肥配施下红壤性稻田水稻产量及土壤有机碳变化特征. 植物营养与肥料学报, 2014,20(2):336-345.
[29] McDowell R W, Sharpley A N . Variation of phosphorus leached from Pennsylvanian soils amended with manures,composts or inorganic fertilizer. Agriculture,Ecosystems and Environment, 2003,102(1):17-27.
[30] 卢浩宇, 文浩, 易镇邪 , 等. 施氮量与无机有机肥配施比例对紫米稻产量形成与米质的影响. 作物杂志, 2017(6):147-153.
[31] 侯红乾, 刘秀梅, 刘光荣 , 等. 有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响. 中国农业科学, 2011,44(3):516-523.
[32] 沈其荣, 沈振国, 史瑞和 . 有机肥氮素的矿化特征及与其化学组成的关系. 南京农业大学学报, 1992(1):59-64.
[33] 谢勇, 赵易艺, 张玉平 , 等. 南方丘陵地区生物黑炭和有机肥配施化肥的应用研究. 水土保持学报, 2018,32(4):197-203,215.
[34] 宁建凤, 徐培智, 杨少海 , 等. 有机无机肥配施对菜地土壤氮素径流流失的影响. 水土保持学报, 2011,25(3):17-21.
[1] Li Guannan,Huang Lihua,Zhang Lu,Chen Jiaxing,Yang Jingmin. Effects of Organic Fertilizer and Straw Returning on Nutrition and Taste Quality of Rice in Saline-Sodic Soil of Northeast China [J]. Crops, 2019, 35(5): 82-88.
[2] Zhou Yun,Li Yongmei,Fan Maopan,Wang Zilin,Xu Zhi,Zhang Dan,Zhao Jixia. Effects of Nitrogen in Organic Manure Replacing Chemical Nitrogenous Fertilizer on Aggregates of Red Soil, Maize Yield and Quality [J]. Crops, 2019, 35(4): 125-132.
[3] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[4] Liping Mao,Dongtang Wu,Weimin Guo,Jun Ren. The Improved Effects of Planting Asparagus on Soil in Cold Desertification Area [J]. Crops, 2019, 35(1): 180-185.
[5] Yiran Ye, ,Bencai Sha,Wenxiang Wang,Hongda Ye,Shixian Geng,Jingjin Cheng,Meirong Hai. Effects of Different Fertilizers on Photosynthetic Characteristics of Winter Potato [J]. Crops, 2018, 34(3): 135-140.
[6] Li Song,Wanyou Liao,Yejun Wang,Youjian Su,Yongli Zhang,Yi Luo,Jun Liao,Weiguo Wu. Research Progress in Intercropping Upland Crops with Green Manure [J]. Crops, 2017, 33(6): 7-11.
[7] Haoyu Lu,Hao Wen,Zhenxie Yi,Tiejun Zhou. Effects of Nitrogen Application Rate and Ratio of Inorganic and Organic Fertilizers on Yield Formation and Rice Quality of Purple Rice [J]. Crops, 2017, 33(6): 147-153.
[8] Jianfu Wu,Zhihong Lu,Dandan Hu. Scientifically Understanding the Role of Organic Fertilizer in Agricultural Production [J]. Crops, 2017, 33(5): 1-6.
[9] Yan Liu,Bo Li,Wentao Sun,Yang Yu. Effects of Bio-organic Fertilizer on Physiological Characters and Yield of Maize in Saline-Alkali Soil [J]. Crops, 2017, 33(2): 98-103.
[10] Wanting Zhang,Chenggong Jin,Huan Zhang,Baiwen Jiang,Baoku Zhou,Xiaowei Xie,Ting Guo. Effects of Combination of Organic and Inorganic Fertilizer on Soil Microbial and Nutrient Content of Continuous Cropping of Maize [J]. Crops, 2016, 32(3): 110-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .