Crops ›› 2020, Vol. 36 ›› Issue (5): 164-169.doi: 10.16035/j.issn.1001-7283.2020.05.024

Previous Articles     Next Articles

Effects of Ridge Tillage of Double Depth and Planting Space on Photosynthesis, Yield and Panicle Traits of Rice

Kang Kai(), Liu Lihua(), Qin Meng, Zheng Guiping, Zhang Xuesong, Bai Chongyang, Zhao Shuang, Gao Xiaohui   

  1. Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2020-03-09 Revised:2020-05-18 Online:2020-10-15 Published:2020-10-12
  • Contact: Liu Lihua E-mail:704053189@qq.com;11887352@qq.com

Abstract:

Based on the problems of soil structure destruction and soil hardening caused by traditional cultivation in rice, the effects of ridge tillage of double depth and different planting spaces on rice yield were studied. The rice variety, Qijing 10, was selected for the experiment, and the two-factor random block design was adopted. The experiment adopted two tillage methods: bilateral deep fertilization on ridge and conventional flat planting, four rows were set for both, and eight treatments in total. The results showed that the panicle weight and the primary branch number under ridge tillage of double depth significantly increased by 7.88% and 7.00% respectively. The net photosynthetic rate, transpiration rate, intercellular CO2 concentration and stomatal conductance increased by 9.33%, 14.81%, 11.46% and 27.09% at the grain-filling stage, respectively. In terms of plant row configuration, the panicle weight per hole treated with plant spacing of 15cm was significantly higher than that of 12cm, the panicle length decreased with the decreasing of the spacing in the rows, the number of panicles will be maximum when the spacing in the rows are 12cm×(17-33)cm, on average 12.87% higher than that of other collocations. The combination of the ridge tillage of double depth and plant spacing of 12cm×(17-33)cm has the highest yield of 10 239.12kg/ha, which was significantly higher than that of other treatments.

Key words: Rice, Ridge tillige of double depth, Yield, Planting space

Table 1

Combinations of tillage methods and planting space"

处理
Treatment
耕作方式
Tillage method
宽窄行距(cm)×株距(cm)
Row space (cm)×Plant space (cm)
T1D1 常规平作 (17~33)×12
T1D2 常规平作 (17~33)×15
T1D3 常规平作 (17~43)×12
T1D4 常规平作 (17~43)×15
T2D1 垄作双深 (17~33)×12
T2D2 垄作双深 (17~33)×15
T2D3 垄作双深 (17~43)×12
T2D4 垄作双深 (17~43)×15

Table 2

The type and amount of fertilizer applied in the test field kg/hm2"

处理
Treatment
肥料分布
Fertilizer distribution
基肥Base fertilizer 分蘖肥
Tillering fertilizer
调节肥
Controlled fertilizer
穗肥Panicle fertilizer
N P2O5 K2O N N N K2O
T1 全层 78.00 57.55 60.12 - 10.35 10.35 31.13
T2 上层 30.50 23.62 23.93 - 10.35 10.35 31.13
下层 47.50 33.93 36.19 - - - -

Fig.1

Schematic diagram of double-deep ridge cultivation pattern of rice"

Table 3

Comparison of actual yield and constituent factors under different treatments"

处理
Treatment
穗数(穗/m2)
Panicle number (panicle/m2)
穗粒数
Number of grains per panicle
结实率
Setting percentage (%)
千粒重
1000-grain weight (g)
实际产量
Actual yield (kg/hm2)
T1D1 519.00bcBC 72.35bcA 91.77abA 27.34bA 9 102.32bBC
T1D2 476.00dCD 74.86abcA 90.11abA 28.17abA 8 435.04bCD
T1D3 480.80cdCD 70.07cA 91.78abA 28.36aA 8 510.07bCD
T1D4 438.60dD 74.08abcA 93.56aA 27.65abA 7 553.70cD
T2D1 590.40aA 78.41abcA 88.87bA 28.47aA 10 239.12aA
T2D2 548.80bAB 81.17abA 91.74abA 27.59abA 10 085.16aAB
T2D3 522.00bcBC 77.13abcA 92.02abA 27.51abA 8 963.27bBC
T2D4 471.27dCD 82.43aA 91.58abA 28.30aA 8 738.97bC
F T 31.63** 12.26** 0.87 0.17 31.95**
F-value D 17.88** 1.26 1.55 0.03 11.37**
T×D 1.13 0.07 1.64 5.24* 1.59

Table 4

Effects of tillage and row arrangement on panicle weight, panicle length and seed density"

处理
Treatment
穗重(g/穴)
Panicle weight
(g/pole)
穗长
Panicle
length (cm)
着粒密度(粒/cm)
Seed density
(grain/cm)
T1D1 30.13cE 19.51abA 3.71bcAB
T1D2 37.09bC 19.66abA 3.81bcAB
T1D3 31.01cDE 19.35abA 3.63cB
T1D4 38.90bBC 16.90cB 4.44aA
T2D1 35.54bCDE 19.76abA 3.97abcAB
T2D2 43.18aAB 19.26abA 4.21abAB
T2D3 36.43bCD 18.93bA 4.08abcAB
T2D4 46.43aA 20.44aA 4.03abcAB
F T 40.91** 6.62* 2.21
F-value D 25.39** 2.17* 2.35*
T×D 0.27 10.82** 2.81

Table 5

Effects of different treatments on primary and secondary branches"

处理
Treatment
一次枝梗The primary branch 二次枝梗The secondary branch
每穗枝梗数
Branch number
per panicle
穗粒数
Grain number
per panicle
结实率
Ripening
rate (%)
千粒重
1000-grain
weight (g)
每穗枝梗数
Branch number
per panicle
穗粒数
Grain number
per panicle
结实率
Ripening
rate (%)
千粒重
1000-grain
weight (g)
T1D1 7.08bcAB 5.36aA 96.09aA 28.38bA 11.61bA 2.96abA 87.05abAB 26.05bA
T1D2 7.51abAB 5.48aA 94.67aA 29.27abA 11.65abA 2.90abA 84.61bAB 26.67abA
T1D3 7.01cB 5.49aA 95.21aA 29.47aA 11.06bA 2.85bA 87.63abAB 26.86abA
T1D4 6.96cB 5.37aA 94.86aA 28.89abA 12.22abA 3.00aA 92.27aA 26.35abA
T2D1 7.57abAB 5.43aA 94.53aA 29.59aA 12.85abA 2.90abA 82.57bB 27.03aA
T2D2 7.75aA 5.54aA 94.52aA 28.76abA 12.70abA 3.00aA 88.61abAB 26.17abA
T2D3 7.75aA 5.47aA 95.19aA 28.66abA 12.07abA 2.87abA 88.09abAB 25.99bA
T2D4 7.50abAB 5.57aA 94.53aA 29.36abA 13.65aA 2.97abA 88.60abAB 26.93abA
F T 24.40* 3.02 1.48 0.15 7.31* 0.07 0.46 0.05
F-value D 2.80* 1.21 0.72 0.07 1.64 2.96* 2.98* 0.26
T×D 0.84 0.85 0.70 4.19* 0.05 1.43 2.06 4.37*

Fig.2

Effects of different tillage methods and plant spacing on 1000-kernel weight"

Table 6

Correlation coefficient of actual yield and yield components"

性状
Trait
穗数
Spike number
穗粒数
Number of grain per panicle
结实率
Setting percentage
千粒重
1000-grain weight
穗粒数Number of grain per panicle -0.33
结实率Setting percentage -0.65 -0.21
千粒重1000-grain weight -0.03 -0.10 -0.61
实际产量Actual yield -0.96** -0.49 -0.63 0.08

Table 7

Effects of different treatments on photosynthetic traits during grain-filling stage"

处理
Treatment
Pn
[μmol/(m2·s)]
Tr
[mmol/(m2·s)]
Ci
[μmol/(m2·s)]
Gs
[mmol/(m2·s)]
T1D1 21.45cB 9.47dA 220.25bA 641.75aA
T1D2 22.95abcAB 10.01bcdA 225.00abA 665.75aA
T1D3 21.93bcAB 9.79cdA 209.75bA 658.25aA
T1D4 21.98bcAB 10.19abcdA 231.25abA 686.75aA
T2D1 24.03abAB 10.58abcdA 230.50abA 786.75aA
T2D2 24.28abAB 11.54abA 239.50abA 858.25aA
T2D3 23.50abcAB 11.82aA 258.00aA 812.00aA
T2D4 24.75aA 11.34abcA 259.75aA 881.50aA
F T 16.69** 15.24** 10.46** 4.97*
F-value D 1.58 1.02 1.13 0.16
T×D 2.14* 0.33 1.19 0.03

Fig.3

Effects of different treatments on net photosynthetic rate during grain-filling stage"

Table 8

Correlation coefficient between photosynthetic traits and yield during grain-filling stage"

项目Item Pn Tr Ci Gs
Tr 0.84** 1
Ci 0.74* 0.90** 1
Gs 0.93** 0.91** 0.84** 1
产量Yield 0.76* 0.59 0.40 0.73*
[1] 彭亚琼, 郑华斌, 扈婷, 等. 垄作梯式栽培对水稻根系生长的影响. 作物研究, 2012,26(S1):14-17.
[2] 李文淑, 曾玉清, 吕泽林, 等. 水稻垄作栽培增产效果及原因分析. 农业科技通讯, 2014(12):118-122.
[3] 王法宏, 杨洪宾, 徐成忠, 等. 垄作栽培对小麦植株形态和产量性状的影响. 作物学报, 2007,33(6):1038-1040.
[4] 钱永德, 李金峰, 郑桂萍, 等. 垄作栽培对寒地水稻根系生长的影响. 中国水稻科学, 2005,19(3):238-242.
[5] 王旭清, 王法宏, 任德昌, 等. 小麦垄作栽培的田间小气候效应及对植株发育和产量的影响. 中国农业气象, 2003,24(2):6-9.
[6] 张荣华, 何庸, 孙广玉. 大豆宽台栽培与垄作耕层温度调查. 现代化农业, 1996(7):13-14.
[7] 李廷亮, 谢英荷, 任苗苗, 等. 施肥和覆膜垄沟种植对旱地小麦产量及水氮利用的影响. 生态学报, 2011,31(1):212-220.
[8] 王凯荣, 刘鑫, 周卫军, 等. 稻田系统养分循环利用对土壤肥力和可持续生产力的影响. 农业环境科学学报, 2004,23(6):1041-1045.
[9] 谢军红, 李玲玲, 张仁陟, 等. 覆膜、沟垄作对旱作农田玉米产量和水分利用的叠加效应. 作物学报, 2018,44(2):268-277.
[10] 王昌全, 魏成明, 李廷强, 等. 不同免耕方式对作物产量和土壤理化性状的影响. 四川农业大学学报, 2001,19(2):152-154,187.
[11] 张婷, 吴普特, 赵西宁, 等. 垄沟种植模式对玉米生长及产量的影响. 干旱地区农业研究, 2013,31(1):27-30,40.
[12] 郑华斌, 姚林, 刘建霞, 等. 种植方式对水稻产量及根系性状的影响. 作物学报, 2014,40(4):667-677.
doi: 10.3724/SP.J.1006.2014.00667
[13] 孙梦媛, 刘景辉, 赵宝平, 等. 全覆膜垄作种植对旱作马铃薯生长和土壤特性的影响. 水土保持学报, 2018,32(5):262-269,276.
[14] 翟星雨, 张兴义, 李浩, 等. 田块尺度顺坡垄作改等高垄作提高黑土有机质含量. 农业工程学报, 2018,34(19):155-161.
[15] 陈静蕊, 刘佳, 王惠明, 等. 保护性耕作措施对陡坡地养分流失的影响. 中国土壤与肥料, 2018(1):146-152.
[16] 李文淑, 曾玉清, 吕泽林, 等. 水稻垄作栽培增产效果及原因分析. 农业科技通讯, 2014(12):118-122.
[17] 钱永德, 刘丽华, 李红宇, 等. 寒地保护性耕作栽培技术对水稻产量及产量构成的影响. 作物杂志, 2010(2):41-44.
[18] 丁瑞霞, 贾志宽, 韩清芳, 等. 宁南旱区微集水种植条件下谷子边际效应和生理特性的响应. 中国农业科学, 2006,39(3):494-501.
[19] 韩娟, 贾志宽, 任小龙, 等. 模拟降雨量下微集水种植对玉米光合速率及水分利用效率的影响. 干旱地区农业研究, 2008(1):81-85,101.
[20] 李升东, 王法宏, 司纪升, 等. 不同基因型冬小麦在两种栽培模式下蒸腾速率、光合速率和水分利用效率的比较研究. 麦类作物学报, 2007,27(3):514-517.
doi: 10.7606/j.issn.1009-1041.2007.03.122
[21] 全妙华, 胡爱生, 欧立军, 等. 耕作方式对水稻光合及根系生理特性的影响. 杂交水稻, 2012,27(3):71-75.
[22] 秦华东, 张玉, 徐世宏, 等. 稻草还田对免耕水稻根系生长及产量的影响. 杂交水稻, 2011,26(4):65-67,71.
[23] 郑华斌, 刘建霞, 姚林, 等. 垄作梯式生态稻作对水稻光合生理特性及产量的影响. 应用生态学报, 2014,25(9):2598-2604.
[24] 吴桂成, 张洪程, 钱银飞, 等. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010,43(2):266-276.
[25] 舒鹏, 郭保卫, 霍中洋, 等. 钵苗机插密度对双季晚稻产量及群体质量的影响. 中国稻米, 2017,23(6):23-31.
[26] Ying J F, Peng S B, He Q G, et al. Comparison of high-yield rice in tropical and subtropical environments - I. Determinants of grain and dry matter yields. Field Crops Research, 1998,57(1):71-84.
doi: 10.1016/S0378-4290(98)00077-X
[27] Ramasamy S, ten Berge H F M, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application. Field Crops Research, 1997,51(1):65-82.
doi: 10.1016/S0378-4290(96)01039-8
[1] Cao Xiaochuang, Li Yefeng, Wu Longlong, Zhu Chunquan, Zhu Lianfeng, Zhang Junhua, Jin Qianyu. Effects of Organic Soluble Fertilizer on the Accumulation and Translocation of Dry Matter and Nitrogen of Rice [J]. Crops, 2020, 36(5): 110-118.
[2] Sun Qi, Geng Yanqiu, Jin Feng, Liu Lixin, Zheng Huantong, Guo Liying, Shao Xiwen. Effects of Sowing Dates on Yield, Dry Matter and Nitrogen Accumulation and Translocationin Organs after Anthesis of Direct Seeding Rice [J]. Crops, 2020, 36(5): 119-126.
[3] Hao Xiyu, Xiao Huanyu, Liang Jie, Wang Yingjie, Guo Wenyun. Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean [J]. Crops, 2020, 36(5): 127-132.
[4] Luo Yuqiong, Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng. Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland [J]. Crops, 2020, 36(5): 133-139.
[5] Ding Kaixin, Shan Ying, Feng Naijie, Zheng Dianfeng, Liang Xilong, Wu Qiong, Huang Wenting. Effects of DTA-6 on Physiological Metabolism and Yield of Two Edible Legumes [J]. Crops, 2020, 36(5): 148-153.
[6] Luo Xinglu, Huang Xiaofeng, Wu Meiyan, Liu Shanqian, Zhao Bowei. Studies on Physiological Characteristics and Main Agronomic Traits of Five Cassava Varieties [J]. Crops, 2020, 36(5): 182-187.
[7] Zhou Haitao, Zhao Mengyuan, Zhang Xinjun, Li Tianliang, Liu Wenting, Liu Zhenning, Yang Xiaohong, Yuan Huifu. Effects of Mepiquat Chloride and Chlorocholine Chloride on the Growth and Yield of Oat [J]. Crops, 2020, 36(5): 188-193.
[8] Jia Suqing, He Lu, Du Yanwei. Effects of Different Tillage Methods on Root Development,Yield and Water Use Efficiency of Spring Millet in Arid Area [J]. Crops, 2020, 36(5): 194-198.
[9] Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203.
[10] Wang Furong, Zhang Jianxue, Guo Minjiang, Zhang Yahong, Fan Tiping, Wang Yahong, Zhang Yan, Pei Guoping, Lei Jianming. Effects of Post-Emergence Herbicide Spraying at Different Stages on Weed Control, and Yield and Quality of Winter Rapeseed [J]. Crops, 2020, 36(5): 204-208.
[11] Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58.
[12] Gong Yanlong, Lei Yue, Yan Zhiqiang, Liu Xuewei, Zhang Dashuang, Wu Jianqiang, Zhu Susong. Comprehensive Evaluation of Phenotype Genetic Diversity in Japonica Rice Germplasm Resources in Different Ecological Zones [J]. Crops, 2020, 36(5): 71-79.
[13] Yang Haifeng, Duan Xueyan, Wei Ling, Liu Bo. The Genetic Study of Yield Traits in Edible Sunflower [J]. Crops, 2020, 36(5): 93-97.
[14] Dai Hongyan, Hua Jinsong. Understanding and Thinking about Ornamental Rice [J]. Crops, 2020, 36(4): 1-8.
[15] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!