Crops ›› 2020, Vol. 36 ›› Issue (5): 110-118.doi: 10.16035/j.issn.1001-7283.2020.05.017

Previous Articles     Next Articles

Effects of Organic Soluble Fertilizer on the Accumulation and Translocation of Dry Matter and Nitrogen of Rice

Cao Xiaochuang(), Li Yefeng, Wu Longlong, Zhu Chunquan, Zhu Lianfeng, Zhang Junhua(), Jin Qianyu   

  1. State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
  • Received:2020-02-09 Revised:2020-06-05 Online:2020-10-15 Published:2020-10-12
  • Contact: Zhang Junhua E-mail:caoxiaochuang@126.com;zhangjunhua@caas.cn

Abstract:

A field experiment was carried out to investigate the effects of the application of organic soluble fertilizer (OSF, including the root application and leaf spraying) on the rice yield, the accumulation and translocation of dry matter and nitrogen (N) of rice, and their relationship with rice yield. The results showed that, compared with the traditional N treatment, root application of OSF under the traditional N rate significantly increased rice yield (8 288.3 kg/ha), which was prior to the effect of the leaf spraying. In the treatments of reduced 15% N rate, root application and leaf spraying of OSF significantly alleviated the reducing effect of rice yield due to the reduced N rate, and rice yield was increased by 3.2%. Root application and leaf spraying of OSF treatments significantly improved the accumulation of dry matter and N of the nutritive organs (leaf and stem-sheath) before the heading stage. It was also significantly increased the N translocation in leaves of rice from the heading to maturity stage, which was beneficial for the improvement of N recovery efficiency and N physiological efficiency. There were significant positive correlations between rice yield and the accumulation of dry matter of leaf and stem-sheath at the heading stage, in exception of stem-sheath at the tillering stage. Rice yield was also significantly positive related to the N translocation of leaf and stem-sheath from the heading to maturity stage. Therefore, maintaining the relative higher dry matter and N accumulation of stem-sheaths and leaves in the vegetative period, and the higher N translocation in leaves from the heading to maturity via the application of OSF are beneficial for the higher grain yield and N use efficiency.

Key words: Rice, Organic soluble fertilizer, Dry matter, Nitrogen, Accumulation and translocation, Yield

Fig.1

Tiller numbers of rice under different treatments"

Fig.2

Plant height and leaf area index of rice at tillering and heading stages Bars marked with the different letters indicate significant difference at P < 0.05. The same below"

Table 1

Grain yield and yield components in different treatments of rice"

处理
Treatment
有效穗数
Effective panicles
(×104/hm2)
千粒重
1000-grain
weight (g)
每穗粒数
Grains per
panicle
结实率
Grain filling
rate (%)
实际产量
Actual yield
(kg/hm2)
增产量
Yield increase
(kg/hm2)
增产率
Increase rate
(%)
T1 210.2±1.2b 26.4±0.1b 170.2±3.1a 93.7±0.4a 7 866.4±147.4b - -
T2 216.4±2.8a 26.9±0.3a 172.0±3.1a 94.0±0.6a 8 288.3±162.5a 423.0 5.4
T3 208.5±3.1b 26.3±0.3b 171.0±4.8a 93.6±0.7ab 7 996.5±75.3b 130.5 1.7
T4 198.3±2.7c 25.9±0.2c 163.3±7.1b 92.9±0.5b 7 602.0±160.9c -264.0 -3.4
T5 205.5±5.4b 26.2±0.1bc 170.3±6.0a 93.8±0.6a 7 849.9±102.9b 28.5 0.4
CK 183.2±4.8d 25.7±0.1c 160.0±5.7b 90.9±0.3c 7 297.9±110.2d -568.5 -7.2

Table 2

Dry matter accumulation and its ratio to total of rice at main growth stages"

生育时期
Growth
stage
处理
Treatment
茎鞘Stem-sheath 叶片Leaf 穗Panicle 总积累量
Total dry matter
(kg/hm2)
干物质积累量
Dry matter
(kg/hm2)
比例
Ratio
(%)
干物质积累量
Dry matter
(kg/hm2)
比例
Ratio
(%)
干物质积累量
Dry matter
(kg/hm2)
比例
Ratio
(%)
分蘖期 T1 2 279.2a 52.3c 2 080.5ab 47.7a - - 4 359.6ab
Tillering T2 2 336.8a 53.1bc 2 061.6bc 46.9ab - - 4 398.4ab
T3 2 242.9ab 52.4c 2 039.7bc 47.6a - - 4 282.6b
T4 2 340.6a 54.0b 1 995.4c 46.0b - - 4 336.0ab
T5 2 324.6a 52.1c 2 136.7a 47.9a - - 4 461.3a
CK 2 166.3b 56.3a 1 681.9d 43.7c - - 3 848.2c
齐穗期 T1 5 082.6bc 57.4ab 2 463.5a 27.8a 1 316.9bc 14.9b 8 863.0bc
Heading T2 5 465.2a 57.0b 2 595.7a 27.1a 1 522.7a 15.9a 9 583.6a
T3 5 228.4b 57.4ab 2 503.5a 27.5a 1 382.0b 15.2b 9 113.9b
T4 5 011.6c 58.4a 2 301.6b 26.8a 1 269.0cd 14.8b 8 582.2c
T5 5 191.0b 57.4ab 2 507.9a 27.7a 1 355.7b 15.0b 9 054.7b
CK 4 743.2d 58.3ab 2 190.3b 26.9a 1 201.2d 14.8b 8 134.7d
成熟期 T1 4 048.9a 25.7a 2 236.4a 14.1bc 9 516.0a 60.2a 15 801.4ab
Maturity T2 4 157.7a 25.9a 2 224.0a 13.9c 9 655.4a 60.2a 16 037.1a
T3 4 020.8a 25.8a 2 203.9ab 14.2bc 9 356.5ab 60.1a 15 581.2bc
T4 3 756.2b 26.4a 2 139.1b 15.0a 8 345.9c 58.6b 14 241.2d
T5 4 043.4a 26.3a 2 253.5a 14.7ab 9 066.9b 59.0ab 15 363.7c
CK 3 400.8c 25.5a 2 049.1c 15.4a 7 899.9d 59.2ab 13 349.7e

Table 3

Accumulation rate of dry matter of rice before the heading stage kg/(hm2·d)"

处理
Treatment
茎鞘Stem-sheath 叶片Leaf
播种–分蘖期
Sowing–Tillering
分蘖期–抽穗期
Tillering–Heading
播种–分蘖期
Sowing–Tillering
分蘖期–抽穗期
Tillering–Heading
T1 30.4a 112.1bc 27.7ab 15.3b
T2 31.2a 125.2a 27.5bc 21.4a
T3 29.9ab 119.4ab 27.2bc 18.5ab
T4 31.2a 106.9cd 26.6c 12.2c
T5 31.0a 114.6bc 28.5a 19.3ab
CK 28.9b 103.1d 22.4d 20.3a

Table 4

Dry matter translocation amount and rate of different organs of rice from the heading to maturity stage"

处理
Treatment
茎鞘Stem-sheath 叶片Leaf 穗部Panicle
转运量
Translocation
amount (kg/hm2)
转运率
Translocation
rate (%)
转运量
Translocation
amount (kg/hm2)
转运率
Translocation
rate (%)
转运量
Translocation
amount (kg/hm2)
转运贡献率
Translocation
contribution rate (%)
T1 1 033.6c 20.3d 227.1b 9.2bc 8 199.1a 13.2c
T2 1 307.5ab 23.9bc 371.7a 14.3a 8 132.7a 17.4ab
T3 1 207.6ab 23.1bcd 299.6ab 11.9ab 7 974.5ab 16.1b
T4 1 255.4ab 25.0b 162.5c 7.0c 7 077.0c 17.0ab
T5 1 147.6bc 22.1cd 354.5a 14.2a 7 711.2b 16.6b
CK 1 342.4a 28.3a 141.3c 6.4c 6 698.7d 18.8a

Fig.3

Nitrogen concentrations in stem-sheaths, leaves and panicles of rice at different growth stages"

Table 5

Nitrogen accumulation (N accumulation) and its ratio to total of rice at main growth stages"

生育时期
Growth stage
处理
Treatment
茎鞘Stem-sheath 叶片Leaf 穗Panicle 总氮积累量
Total N accumulation
(kg/hm2)
氮积累量
N accumulation
(kg/hm2)
比例
Ratio
(%)
氮积累量
N accumulation
(kg/hm2)
比例
Ratio
(%)
氮积累量
N accumulation
(kg/hm2)
比例
Ratio
(%)
分蘖期 T1 57.1a 45.8a 67.4ab 54.2b 124.5a
Tillering T2 57.7a 46.5a 66.5ab 53.5b 124.2a
T3 56.8a 46.4a 65.6b 53.6b 122.3a
T4 52.8b 47.1a 59.3c 52.9b 112.1b
T5 52.5b 43.3b 68.6a 56.7a 121.1a
CK 40.8c 46.9a 46.1d 53.1b 86.9c
齐穗期 T1 104.7b 56.2ab 63.6b 34.1bc 18.1bc 9.7b 186.3b
Heading T2 113.0a 56.0ab 67.7a 33.6bc 21.0a 10.4a 201.7a
T3 107.7ab 56.4ab 64.4b 33.7bc 19.0b 9.9b 191.1b
T4 93.7c 57.2a 54.3c 33.1c 15.8d 9.7b 163.8d
T5 97.3c 55.2bc 62.2b 35.3ab 16.9cd 9.6b 176.5c
CK 71.6d 54.2c 48.3d 36.6a 12.1e 9.2c 132.0e
成熟期 T1 49.1ab 24.5a 22.5b 11.3bc 128.8a 64.2b 200.4ab
Maturity T2 50.4a 24.6a 23.8a 11.6a 130.4a 63.7bc 204.6a
T3 48.7ab 24.7a 22.1b 11.2bc 126.4a 64.1b 197.2b
T4 43.3c 25.6a 19.1c 11.3bc 106.8c 63.1bc 169.2d
T5 48.4b 25.5a 22.6b 11.8a 119.0b 62.6c 189.9c
CK 34.8d 23.2b 16.5d 11.0c 99.2d 65.9a 150.4e

Table 6

Accumulation rate of nitrogen before the heading stage of rice kg/(hm2·d)"

处理
Treatment
茎鞘Stem-sheath 叶片Leaf
播种–分蘖盛期
Sowing–Tillering
分蘖盛期–抽穗
Tillering–Heading
播种–分蘖盛期
Sowing–Tillering
分蘖盛期–抽穗
Tillering–Heading
T1 0.76a 1.90bc 0.90a -0.15
T2 0.77a 2.35a 0.89a 0.09
T3 0.75a 2.04b 0.87a -0.06
T4 0.70b 1.64d 0.79b -0.20
T5 0.70bc 1.79cd 0.91a -0.19
CK 0.54d 1.23e 0.61c 0.09

Table 7

Nitrogen translocation in different organs of rice from heading to maturity stage"

处理
Treatment
茎鞘Stem-sheath 叶片Leaf 穗部Panicle
转运量
Translocation
amount (kg/hm2)
转运率
Translocation
rate (%)
转运量
Translocation
amount (kg/hm2)
转运率
Translocation
rate (%)
增加量
Increase amount
(kg/hm2)
转运贡献率
Translocation
contribution rate (%)
T1 55.5bc 53.0abc 40.1b 64.6a 110.6a 86.4bc
T2 62.6a 55.3a 43.9a 64.8a 109.4a 97.5a
T3 59.1ab 54.8a 42.3ab 65.7a 107.4a 94.5ab
T4 50.4c 53.8ab 35.2c 64.8a 91.0c 94.1ab
T5 48.9c 50.2c 39.7b 63.7a 102.0b 86.8bc
CK 36.8d 51.4bc 31.9d 65.9a 87.1d 78.9c

Fig.4

Nitrogen recovery efficiency and nitrogen physiological efficiency of rice under different treatments"

Table 8

Correlation coefficients between accumulations and translocations of dry matter and rice yields"

器官
Organ
干物质积累量
Dry matter accumulation
干物质积累速率
Dry matter accumulation rate
干物质转运量
Dry matter
translocation
干物质转运率
Dry matter
translocation rate
分蘖期
Tillering
抽穗期
Heading
成熟期
Maturity
播种–分蘖
Sowing–Tillering
分蘖–抽穗
Tillering–Heading
抽穗–成熟
Heading–Maturity
茎鞘Stem-sheath 0.35 0.86** 0.82** 0.35 0.84** -0.13 -0.48*
叶片Leaf 0.66** 0.71** 0.74** 0.66** 0.18 -0.58* -0.53*
穗Panicle - 0.80** 0.82** - - - -

Table 9

Correlation coefficients between accumulations and translocations of nitrogen and rice yields"

器官
Organ
氮积累量
N accumulation amount
氮积累速率
N accumulation rate
氮转运量
N translocation amount
氮转运率
N translocation rate
分蘖期
Tillering
抽穗期
Heading
成熟期
Maturity
播种–分蘖
Sowing–Tillering
分蘖–抽穗
Tillering–Heading
抽穗–成熟
Heading–Maturity
茎鞘Stem-sheath 0.76** 0.89** 0.82** 0.76** 0.91** 0.88** -0.58*
叶片Leaf 0.74** 0.83** 0.88** 0.74** 0.04 0.78** -0.37
穗Panicle - 0.89** 0.83** - - - -
[1] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
[2] 孙永健, 孙园园, 徐徽, 等. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014,40(9):1639-1649.
doi: 10.3724/SP.J.1006.2014.01639
[3] 姜丽娜, 王强, 李艾芬, 等. 休闲稻田消解沼液生态效应及其对水稻安全生产影响研究. 农业环境科学学报, 2011,30(12):2483-490.
[4] 陈贤友, 吴良欢, 韩科峰, 等. 包膜尿素和普通尿素不同掺混比例对水稻产量与氮肥利用率的影响. 植物营养与肥料学报, 2010,16(4):918-923.
doi: 10.11674/zwyf.2010.0421
[5] 李燕婷, 李秀英, 肖艳, 等. 叶面肥的营养机理及应用研究进展. 中国农业科学, 2009,42(1):162-172.
[6] 谭乾开, 黎华寿, 郑小红, 等. 叶面肥美加富(Megafol)对水稻收获期农艺性状及产量构成的影响. 中国农学通报, 2011,27(24):142-147.
[7] 谢崇华, 杨国涛, 张玲, 等. 高产优质水稻品种 B 优 827 干物质积累与分配特性研究. 西南大学学报(自然科学版), 2007,29(6):62-67.
[8] 霍中洋, 杨雄, 张洪程, 等. 不同氮肥群体最高生产力水稻品种各器官的干物质和氮素的积累与转运. 植物营养与肥料学报, 2012,18(5):1035-1045.
doi: 10.11674/zwyf.2012.11487
[9] 张维乐, 戴志刚, 任涛, 等. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响. 中国农业科学, 2016,49(7):1254-1266.
doi: 10.3864/j.issn.0578-1752.2016.07.004
[10] 周旋, 金蓉, 吴良欢, 等. 生化抑制剂组合与施肥模式对黄泥田水稻群体质量的影响. 中国水稻科学, 2018,32(2):169-180.
[11] 李晓峰, 程金秋, 梁健, 等. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响. 作物学报, 2017,43(6):912-924.
[12] 江立庚, 甘秀芹, 韦善清, 等. 水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系. 应用生态学报, 2004,15(21):226-230.
[13] 凌启鸿. 中国特色水稻栽培理论和技术体系的形成与发展:纪念陈永康诞辰一百周年. 江苏农业学报, 2008,24(2):101-113.
[14] Jiang L G, Dao T B, Jiang D, et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research, 2004,88(2/3):239-250.
doi: 10.1016/j.fcr.2004.01.023
[15] Haefele S M, Jabbar S M A, Siopongco J D L C, et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels. Field Crops Research, 2008,107(2):137-146.
doi: 10.1016/j.fcr.2008.01.007
[16] 魏中伟, 马国辉, 龙继锐, 等. 5-氨基乙酰丙酸叶面肥对杂交晚稻光合作用和产量的影响. 湖南农业科学, 2013(7):65-67,72.
[17] 潘俊峰, 李国辉, 崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用. 中国水稻科学, 2014,28(4):335-342.
doi: 10.3969/j.issn.10017216.2014.04.001
[18] Yoshida S. Fundamental of Rice Crop Science. Manila Philippines:The International Rice Research Institute, 1981: 118-137.
[19] Mae T, Ohira K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryze Sativa L.). Plant and Cell Physiology, 1981,22(6):1067-1074.
[20] 李超, 韦还和, 许俊伟, 等. 甬优系列籼粳杂交稻氮素积累与转运特征. 植物营养与肥料学报, 2016,22(5):1177-1186.
[21] 单玉华, 王海候, 龙银成, 等. 不同库容量类型水稻在氮素吸收利用上的差异. 扬州大学学报(农业与生命科学版), 2004,25(1):41-45.
[22] Sui B, Feng X M, Tian G L, et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. Field Crops Research, 2013,150:99-107.
doi: 10.1016/j.fcr.2013.06.012
[23] Chen G, Chen Y, Zhao G H, et al. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?. Agriculture, Ecosystems & Environment, 2015,209:26-33.
[24] Jiang L G, Dai T B, Jiang D, et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research, 2004,88:239-250.
doi: 10.1016/j.fcr.2004.01.023
[25] Huang M, Chen J N, Can F B, et al. Improving physiological N-use efficiency by increasing harvest index in rice:a case in supper-hybrid cultivar Guiliang 2. Archives of Agronomy and Soil Science, 2016,65(5):725-743.
[26] 陈贵, 张红梅, 沈亚强, 等. 嘉兴地区不同基因型水稻的氮利用效率研究. 浙江农业学报, 2015,27(11):1965-1970.
[27] 张耀鸿, 张亚丽, 黄启为, 等. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006,12(5):616-621.
doi: 10.11674/zwyf.2006.0503
[1] Sun Qi, Geng Yanqiu, Jin Feng, Liu Lixin, Zheng Huantong, Guo Liying, Shao Xiwen. Effects of Sowing Dates on Yield, Dry Matter and Nitrogen Accumulation and Translocationin Organs after Anthesis of Direct Seeding Rice [J]. Crops, 2020, 36(5): 119-126.
[2] Hao Xiyu, Xiao Huanyu, Liang Jie, Wang Yingjie, Guo Wenyun. Effects and Optimum Rates of Nitrogen, Phosphorus and Potassium Fertilizer for Mung Bean [J]. Crops, 2020, 36(5): 127-132.
[3] Luo Yuqiong, Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng. Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland [J]. Crops, 2020, 36(5): 133-139.
[4] Ding Kaixin, Shan Ying, Feng Naijie, Zheng Dianfeng, Liang Xilong, Wu Qiong, Huang Wenting. Effects of DTA-6 on Physiological Metabolism and Yield of Two Edible Legumes [J]. Crops, 2020, 36(5): 148-153.
[5] Kang Kai, Liu Lihua, Qin Meng, Zheng Guiping, Zhang Xuesong, Bai Chongyang, Zhao Shuang, Gao Xiaohui. Effects of Ridge Tillage of Double Depth and Planting Space on Photosynthesis, Yield and Panicle Traits of Rice [J]. Crops, 2020, 36(5): 164-169.
[6] Luo Xinglu, Huang Xiaofeng, Wu Meiyan, Liu Shanqian, Zhao Bowei. Studies on Physiological Characteristics and Main Agronomic Traits of Five Cassava Varieties [J]. Crops, 2020, 36(5): 182-187.
[7] Zhou Haitao, Zhao Mengyuan, Zhang Xinjun, Li Tianliang, Liu Wenting, Liu Zhenning, Yang Xiaohong, Yuan Huifu. Effects of Mepiquat Chloride and Chlorocholine Chloride on the Growth and Yield of Oat [J]. Crops, 2020, 36(5): 188-193.
[8] Jia Suqing, He Lu, Du Yanwei. Effects of Different Tillage Methods on Root Development,Yield and Water Use Efficiency of Spring Millet in Arid Area [J]. Crops, 2020, 36(5): 194-198.
[9] Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203.
[10] Wang Furong, Zhang Jianxue, Guo Minjiang, Zhang Yahong, Fan Tiping, Wang Yahong, Zhang Yan, Pei Guoping, Lei Jianming. Effects of Post-Emergence Herbicide Spraying at Different Stages on Weed Control, and Yield and Quality of Winter Rapeseed [J]. Crops, 2020, 36(5): 204-208.
[11] Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58.
[12] Gong Yanlong, Lei Yue, Yan Zhiqiang, Liu Xuewei, Zhang Dashuang, Wu Jianqiang, Zhu Susong. Comprehensive Evaluation of Phenotype Genetic Diversity in Japonica Rice Germplasm Resources in Different Ecological Zones [J]. Crops, 2020, 36(5): 71-79.
[13] Yang Haifeng, Duan Xueyan, Wei Ling, Liu Bo. The Genetic Study of Yield Traits in Edible Sunflower [J]. Crops, 2020, 36(5): 93-97.
[14] Dai Hongyan, Hua Jinsong. Understanding and Thinking about Ornamental Rice [J]. Crops, 2020, 36(4): 1-8.
[15] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!