Crops ›› 2024, Vol. 40 ›› Issue (1): 117-125.doi: 10.16035/j.issn.1001-7283.2024.01.016

;

Previous Articles     Next Articles

Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage

Ji Ping1(), Liu Jinlong1(), Liu Hao1, Kuang Jiali1, Ye Shihe1, Long Sha1, Yang Hongtao1, Peng Bo1, Xu Chen2, Liu Xiaolong1()   

  1. 1College of Life Science and Resources and Environment, Yichun University / Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun 336000, Jiangxi, China
    2Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
  • Received:2022-06-14 Revised:2022-07-28 Online:2024-02-15 Published:2024-02-20
  • Contact: Liu Xiaolong E-mail:jipingteng@163.com;3275268807@qq.com;lxl032202@163.com

Abstract:

In order to systematically analyzed the effects of heat stress on yield components and rice quality during heading stage, eight rice varieties widely planted in Jiangxi province were used as materials, and the differences of heading time, panicle characteristics, yield components and rice quality among different rice varieties were measured under heat stress (38 ℃/32 ℃, day/night) at heading stage. The results showed that heat stress during heading stage induced the shortened of heading time, panicle development was inhibited, panicle length and panicle weight decreased significantly. Heat stress caused yield loss by 27.44%-40.33% among different rice varieties, respectively, and the 1000-grain weight was the largest decline index of yield components under heat stress. Heat stress caused decrease of the contents of starch and sucrose, as well the rates of brown rice, milled rice and head rice, while the contents of glucose and fructose, chalky kernel and chalkiness were significantly increased induced by heat stress. The yield loss of Huanghuazhan and Xiangliangyou 900 were less than other rice varieties under heat stress during heading stage, which was expressed by smaller shortened of heading time, higher panicle length, panicle weight and more spikelets, as well as smaller decline of the starch and sucrose content. The yield loss of Yuewangsimiao and Xiangliangyou 2 were more than other rice varieties under heat stress. The resistance coefficient in multiple indices of each rice variety was highly consistent with the yield loss under heat stress. Taken together, there was consistency of effects induced by heat stress between yield formation and rice quality, which indicated that rice varieties with higher yield loss suffered from severe effects in rice quality induced by heat stress.

Key words: Rice, Heat stress, Heading stage, Yield, Quality

Table 1

Growth period of different rice cultivars d"

品种
Variety
生育期
Growth period
品种
Variety
生育期
Growth period
C1 136 C5 136
C2 122 C6 139
C3 122 C7 121
C4 121 C8 139

Table 2

"

品种
Variety
始穗期
Initial heading stage
齐穗期Full heading stage
对照CK 高温HS
C1 07-23 08-01 07-31
C2 07-14 07-22 07-20
C3 07-15 07-24 07-23
C4 07-13 07-22 07-20
C5 07-25 08-04 08-02
C6 07-26 08-04 08-04
C7 07-13 07-21 07-20
C8 07-25 08-04 08-01

Fig.1

Differences of panicle growth and yield components of different rice varieties under heat stress during heading stage “*”and“**”indicate significant differences at P < 0.05 and P < 0.01 levels between different treatments in the same rice variety, respectively, the same below."

Fig.2

Effects of heat stress on yields in different rice varieties during heading stage"

Fig.3

Effects of heat stress on starch and sucrose contents in different rice varieties during heading stage"

Table 3

Effects of heat stress on appearance and milling quality in rice grain of different rice varieties during heading stage %"

品种
Variety
糙米率
Brown rice rate
精米率
Milled rice rate
整精米率
Head rice rate
垩白粒率
Chalky kernel rate
垩白度
Chalkiness
对照CK 高温HS 对照CK 高温HS 对照CK 高温HS 对照CK 高温HS 对照CK 高温HS
C1 77.88±3.66 71.47±3.49* 72.37±2.31 67.62±2.35** 68.13±5.55 62.63±2.18* 8.48±1.25 10.37±0.63** 3.78±0.56 4.80±0.51**
C2 74.35±3.34 64.02±2.63** 64.33±3.07 57.50±3.08** 57.82±3.02 51.90±1.19** 14.87±1.79 18.20±1.32** 5.10±0.63 6.47±0.22**
C3 78.98±3.28 70.98±2.69** 71.20±2.95 63.07±1.75** 63.95±1.98 56.35±2.16** 12.38±2.00 15.87±0.48** 4.03±0.61 5.32±0.23**
C4 72.08±1.16 62.35±1.79** 66.47±3.36 58.62±2.04** 58.80±1.96 52.05±1.71** 15.90±1.60 20.78±1.24** 5.82±0.52 7.80±0.33**
C5 70.78±3.99 65.23±2.92* 70.68±3.10 64.20±1.48** 64.63±2.99 59.75±3.39* 13.18±2.04 16.28±0.99** 5.15±1.10 6.20±0.44*
C6 71.12±3.88 64.80±4.00* 69.65±4.94 63.12±1.48* 65.30±2.89 58.85±1.80** 10.47±1.07 13.03±0.54** 4.17±0.77 5.03±0.22*
C7 76.10±4.18 69.95±3.08* 68.33±5.50 62.70±2.70* 59.28±5.83 54.30±1.51 17.72±1.86 21.05±1.26** 8.02±0.79 9.22±0.46**
C8 78.57±3.37 71.27±1.90** 69.78±5.07 63.78±1.99* 62.57±1.94 56.50±1.76** 17.92±1.68 24.73±1.43** 8.08±0.39 10.87±0.56**

Fig.4

The resistance coefficient of each index in different rice varieties under heat stress during heading stage Different small letters indicate significant differences between different rice varieties at 0.05 level."

[1] Zhao C, Liu B, Piao S L, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:9326-9331.
[2] Xu Y F, Chu C C, Yao S G. The impact of high-temperature stress on rice: challenges and solutions. The Crop Journal, 2021, 9(5):963-976.
doi: 10.1016/j.cj.2021.02.011
[3] Janni M, Gullì M, Maestri E, et al. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 2020, 71:3780-3802.
doi: 10.1093/jxb/eraa034 pmid: 31970395
[4] 刘文英, 孙素琴, 刘冬梅, 等. 1959-2020年江西省持续区域性高温过程特征. 气象与减灾研究, 2021, 44(4):251-256.
[5] 杨建莹, 霍治国, 王培娟, 等. 江西早稻高温热害等级动态判识及时空变化特征. 应用生态学报, 2020, 31(1):199-207.
doi: 10.13287/j.1001-9332.202001.017
[6] 张卫建, 陈长青, 江瑜, 等. 气候变暖对我国水稻生产的综合影响及其应对策略. 农业环境科学学报, 2020, 39(4):805-811.
[7] 宋有金, 吴超, 李子煜, 等. 水稻产量对生殖生长阶段不同时期高温的响应差异. 中国水稻科学, 2021, 35(2):177-186.
doi: 10.16819/j.1001-7216.2021.0203
[8] 刘晓龙, 季平, 杨洪涛, 等. 脱落酸对水稻抽穗开花期耐高温胁迫的诱抗效应. 植物学报, 2022, 57(5):596-610.
doi: 10.11983/CBB22022
[9] 张桂莲, 张顺堂, 肖浪涛, 等. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响. 中国水稻科学, 2014, 28 (2):155-166.
[10] Wang Y L, Wang L, Zhou J X, et al. Research progress on heat stress of rice at flowering stage. Rice Science, 2019, 26(1):1-10.
doi: 10.1016/j.rsci.2018.06.009
[11] Zhang C X, Feng B H, Chen T T, et al. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environmental and Experimental Botany, 2018, 155:718-733.
doi: 10.1016/j.envexpbot.2018.08.021
[12] 成臣, 曾勇军, 程慧煌, 等. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响. 中国水稻科学, 2019, 33(1):57-67.
doi: 10.16819/j.1001-7216.2019.8077
[13] Lyman N B, Jagadish K S, Nalley L L, et al. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS ONE, 2013, 8:e72157.
doi: 10.1371/journal.pone.0072157
[14] 段骅, 佟卉, 刘燕清, 等. 高温和干旱对水稻的影响及其机制的研究进展. 中国水稻科学, 2019, 33(3):206-218.
doi: 10.16819/j.1001-7216.2019.8106
[15] 徐富贤, 周兴兵, 蒋鹏, 等. 利用杂交水稻开花比例鉴定耐高温性的方法. 中国生态农业学报, 2017, 25(9):1335-1344.
[16] 杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展. 应用生态学报, 2020, 31(8):2817-2830.
doi: 10.13287/j.1001-9332.202008.027
[17] 曹云英, 段骅, 杨立年, 等. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因. 作物学报, 2000, 35 (3):512-521.
[18] 陶龙兴, 谈惠娟, 王熹, 等. 开花和灌浆初期高温胁迫对国稻6号结实的生理影响. 作物学报, 2009, 35(1):110-117.
doi: 10.3724/SP.J.1006.2009.00110
[19] 池忠志, 郑家国, 姜心禄, 等. 四川杂交籼稻品种耐热性研究. 中国稻米, 2010, 16(3):14-15.
[20] 杨梯丰, 张少红, 王晓飞, 等. 水稻抽穗开花期耐热种质资源的筛选鉴定. 华南农业大学学报, 2012, 33(4):585-588.
[21] Zhao Q, Zhou L J, Liu J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiology and Biochemistry, 2018, 122:90-101.
doi: S0981-9428(17)30372-8 pmid: 29202329
[22] Shi P, Tang L, Wang L, et al. Post-heading heat stress in rice of South China during 1981-2010. PLoS ONE, 2015, 10:e0130642.
doi: 10.1371/journal.pone.0130642
[23] Huang J, Zhang F M, Xue Y, et al. Recent changes of rice heat stress in Jiangxi province, southeast China. International Journal of Biometeorology, 2017, 61:623-633.
doi: 10.1007/s00484-016-1239-3 pmid: 27577031
[24] Ahmed N, Tetlow I J, Nawaz S, et al. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science and Food Agricultural, 2015, 95(11):2237-2243.
doi: 10.1002/jsfa.2015.95.issue-11
[25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 优质稻谷:GB/T 17891-2017. 北京: 中国标准出版社, 2017.
[26] Shi W, Li X, Schmidt R C, et al. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice. Plant Cell and Environment, 2018, 41:1287-1297.
doi: 10.1111/pce.v41.6
[27] Zhang C, Li G, Chen T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018, 11(1):14.
doi: 10.1186/s12284-018-0206-5 pmid: 29532187
[28] 王强, 陈雷, 张晓丽, 等. 水稻生殖生长阶段不同时期高温热害对产量损失的影响. 中国稻米, 2017, 23(4):78-80.
[29] 甄博, 周新国, 陆红飞, 等. 拔节期高温与涝交互胁迫对水稻生长发育的影响. 农业工程学报, 2018, 34(21):105-111.
[30] 唐汇春, 谢晓金. 不同生育期高温对水稻物质转运及产量结构的影响. 江西农业学报, 2022, 34(2):1-7.
[31] 吴思佳, 李仁英, 谢晓金, 等. 抽穗期高温对水稻叶片光合特性、叶绿素荧光特性和产量构成因素的影响. 南方农业学报, 2021, 52(1):20-27.
[32] 石春林, 骆宗强, 江敏, 等. 减数分裂期高温对水稻穗粒数影响的定量分析. 中国水稻科学, 2017, 31(6):658-664.
doi: 10.16819/j.1001-7216.2017.7032
[33] 闫浩亮, 王松, 王雪艳, 等. 不同水稻品种在高温逼熟下的表现及其与气象因子的关系. 中国水稻科学, 2021, 35(6):617-628.
doi: 10.16819/j.1001-7216.2021.210509
[34] 张桂莲, 张顺堂, 王力, 等. 抽穗结实期不同时段高温对稻米品质的影响. 中国农业科学, 2013, 46(14):2869-2879.
doi: 10.3864/j.issn.0578-1752.2013.14.003
[35] 何国成, 张桂莲, 蔡志欢, 等. 花后不同时段高温对水稻籽粒充实的影响. 植物生理学报, 2017, 53(8):1539-1544.
[36] Liu J P, Zhang C C, Wei C C, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2- induced stomatal closure in rice. Plant Physiology, 2016, 170:429-443.
doi: 10.1104/pp.15.00879
[37] Jagadish S V K, Muthurajan R, Oana R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61:143-156.
doi: 10.1093/jxb/erp289 pmid: 19858118
[38] Liao J L, Zhang H Y, Shao X L, et al. Identification on heat tolerance of backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice. Rice Science, 2011, 18:279-286.
doi: 10.1016/S1672-6308(12)60006-7
[39] Shi W J, Yin X Y, Struik P C, et al. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. Journal of Experimental Botany, 2017, 68:5233-5245.
doi: 10.1093/jxb/erx344 pmid: 29106621
[40] 王亚梁, 张玉屏, 曾研华, 等. 水稻穗形成期高温影响的研究进展. 浙江农业科学, 2014(11):1681-1685.
[41] Liu X L, Xie X Z, Zheng C K, et al. RNAi-mediated suppression of the abscisic acid catabolism gene OsABA8ox1 increases abscisic acid content and tolerance to saline-alkaline stress in rice (Oryza sativa L.). The Crop Journal, 2022, 10(2):354-367.
doi: 10.1016/j.cj.2021.06.011
[42] 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应. 农业环境科学学报, 2020, 39(4):822-833.
[43] Kato K, Suzuki Y, Hosak Y, et al. Effect of high temperature on starch biosynthetic enzymes and starch structure in japonica rice cultivar “Akitakomachi” (Oryza sativa L.) endosperm and palatability of cooked rice. Journal of Cereal Science, 2019, 87:209-214.
doi: 10.1016/j.jcs.2019.04.001
[44] SiddikK M A, Zhang J, Chen J, et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. European Journal of Agronomy, 2019, 106:30-38.
doi: 10.1016/j.eja.2019.03.004
[45] 王军可, 王亚梁, 陈惠哲, 等. 灌浆初期高温影响水稻籽粒碳氮代谢的机理. 中国农业气象, 2020, 41(12):774-784.
[1] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[2] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[3] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Wang Yanjie, Zhao Guangcai. Effects of Nitrogen Dressing Time and Proportion on Wheat Grain Filling and Its Physiological Mechanism [J]. Crops, 2024, 40(1): 174-179.
[4] Hao Xiaocong, Li Xinyu, Hou Qiling, Yang Jifang, An Chunhui, Wang Changhua, Ye Zhijie, Zhang Fengting. Effects of Nitrogen Application Rate on the Quality of Two-Line Hybrid Wheat [J]. Crops, 2024, 40(1): 187-192.
[5] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[6] Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228.
[7] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[8] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
[9] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[10] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[11] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[12] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[13] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[14] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[15] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!