Crops ›› 2024, Vol. 40 ›› Issue (1): 90-96.doi: 10.16035/j.issn.1001-7283.2024.01.012

;

Previous Articles     Next Articles

Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling

Xie Hao1,2(), Xue Zhangyi1,2, Shu Chenchen1,2, Zhang Weiyang1,2, Zhang Hao1,2, Liu Lijun1,2, Wang Zhiqin1,2, Yang Jianchang1,2, Gu Junfei1,2()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University / Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops /Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-08-02 Revised:2023-09-15 Online:2024-02-15 Published:2024-02-20
  • Contact: Gu Junfei E-mail:347216741@qq.com;gujf@yzu.edu.cn

Abstract:

The 15N labeling was used to trace the fate of base fertilizer nitrogen through to provide theoretical and practical basis for the efficient nitrogen fertilizer management practices in rice. Wuyunjing 24 was used as the experimental material in a two-year field experiment. The effects of different cultivation measures on nitrogen use efficiency of rice base fertilizer were studied by using five treatments (nitrogen blank area, local conventional cultivation, and comprehensive management measures 1-3), such as increasing density and reducing nitrogen, shifting nitrogen before and after, light dry and wet alternate irrigation, and increasing cake fertilizer. The results showed that 25.76%, 24.46%, and 49.78% of the nitrogen from the base fertilizer were absorbed by the plants, remained in the soil, and lost to the environment, respectively. Compared with local farmers’ practice, integrated crop management can significantly increase the uptake ratio of basal nitrogen fertilizer by crops (38.8%-61.3%), reduce the residual ratio in soil (10.3%-24.8%), and reduce the ratio of basal nitrogen fertilizer entering the environment (1.8%-18.1%). Compared with the local farmers’ practice, the integrated crop management had higher nitrogen accumulations all the growth stages; the integrated crop management significantly improved the nitrogen absorption of the basal fertilizer by the plants, reduced the nitrogen loss, and significantly increased the partitioning of nitrogen to the grains. The integrated crop management practices also improved soil quality, the activities of soil urease and catalase. The comprehensive research results showed that the nitrogen absorption of plants, the soil quality, the nitrogen storage capacity of soil, the nitrogen utilization rate of base fertilizer and the yield could be significantly increased by optimizing cultivation measures.

Key words: Rice, Basal fertilizer nitrogen, Yield, Nitrogen use efficiency

Table 1

List of cultivation measures for each treatment"

处理
Treatment
N 密度
Density (cm×cm)
水分管理
Water management
菜籽饼肥
Rapeseed cake fertilizer (kg/hm2)
总量Total amount (kg/hm2) 比例Rate
0N 0 0 13.3×30 常规灌溉 0
LFP 300 5:2:2:1 13.3×30 常规灌溉 0
ICM1 270 4:2:2:2 10.7×30 常规灌溉 0
ICM2 270 4:2:2:2 10.7×30 轻干湿交替灌溉 0
ICM3 270 4:2:2:2 10.7×30 轻干湿交替灌溉 2 250

Table 2

Effects of different treatments on rice yield and its components"

年份
Year
处理
Treatment
穗数
Number of
panicles
穗粒数
Number of spikelets
per panicle
总颖花数
Total spikelets
(×104/m2)
结实率
Seed-setting
rate (%)
千粒重
1000-seed
weight (g)
产量
Yield
(t/hm2)
氮肥回收利用率
Nitrogen recovery
efficiency (%)
2018 0N 166.34e 138.49d 2.30e 90.77a 27.77a 5.81e
LFP 259.23d 165.31a 4.29d 84.28bc 26.56bc 9.60d 27.33d
ICM1 273.93c 163.91bc 4.49c 85.16bc 26.68bc 10.19c 34.26c
ICM2 291.24b 162.75bc 4.74b 85.87bc 26.72bc 10.88b 37.75b
ICM3 311.24a 160.97c 5.01a 86.89ab 26.88bc 11.70a 39.26a
2019 0N 164.82e 135.45b 2.23e 91.85a 28.85a 5.92d
LFP 257.69d 167.20a 4.31d 86.51bc 26.47b 9.87c 23.56d
ICM1 269.22c 166.58a 4.48c 85.83c 26.52b 10.12c 29.66c
ICM2 285.11b 167.85a 4.78b 86.81b 27.15b 11.01b 31.44b
ICM3 306.60a 164.50a 5.04a 87.01b 26.51b 11.63a 33.56a

Fig.1

Effects of different treatments on nitrogen accumulation and absorption PTS: pre-tillering stage; LTS: late-tillering stage; PI: panicle initiation stage; MA: mature stage. Different letters in the same column indicate significant differences between different treatments at P < 0.05. The same below."

Table 3

Analysis of nitrogen destination of base fertilizer under different treatments"

年份
Year
处理
Treatment
植株吸收的基肥氮
Basal N fertilizer absorbed by plant
土壤残留的氮
Residual N in soil
损失的氮
Unaccounted N loss
(kg N/hm2) % (kg N/hm2) % (kg N/hm2) %
2018 LFP 30.04b 20.02c 42.35a 28.23a 77.62a 51.75a
ICM1 30.41b 28.16b 27.23b 25.21b 50.36b 46.63b
ICM2 33.49a 31.01a 26.47b 24.51bc 48.04b 44.48bc
ICM3 34.88a 32.29a 27.35b 25.32b 45.78b 42.39c
2019 LFP 25.89c 17.26c 40.76a 27.17a 83.36a 55.57a
ICM1 25.88c 23.96b 23.19b 21.47bc 58.94b 54.57a
ICM2 27.96bc 25.89ab 22.08b 20.44c 57.96b 53.67a
ICM3 29.72a 27.52a 25.19b 23.32b 53.09c 49.16b

Table 4

Distribution of base fertilizer nitrogen in plant under different treatments"

年份
Year
处理
Treatment
根吸收的氮
N absorbed by roots
叶吸收的氮
N absorbed by leaves
茎吸收的氮
N absorbed by stems
穗吸收的氮
N absorbed by panicles
(kg N/hm2) % (kg N/hm2) % (kg N/hm2) % (kg N/hm2) %
2018 LFP 1.76b 5.86a 5.57c 18.54a 6.98b 23.24b 15.73d 52.36c
ICM1 1.82b 5.98a 5.63c 18.51a 7.05b 23.18bc 15.91c 52.32c
ICM2 1.96a 5.85a 5.77b 17.23b 7.97a 23.80a 17.79b 53.12b
ICM3 2.02a 5.79a 5.88a 16.86c 8.03a 23.02c 18.95a 54.33a
2019 LFP 1.48a 5.72a 5.02c 19.39a 6.03c 23.29ab 13.36c 51.60c
ICM1 1.45a 5.60a 5.01c 19.36a 5.97c 23.07b 13.45c 51.97bc
ICM2 1.53a 5.47a 5.22b 18.67b 6.57b 23.50a 14.64b 52.36ab
ICM3 1.58a 5.32a 5.52a 18.57b 6.92a 23.28ab 15.70a 52.83a

Fig.2

Nitrogen uptake of base fertilizer and its proportion of total nitrogen uptake"

Fig.3

Soil enzyme activities under different cultivation measures"

[1] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7):1273-1289.
doi: 10.3864/j.issn.0578-1752.2014.07.004
[2] 凌启鸿, 张洪程, 蔡建中, 等. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6):1-11.
[3] Wang X, Wu W, Liao Y. Mitigating ammonia volatilization and increasing nitrogen use efficiency through appropriate nitrogen management under supplemental irrigation and rain-fed condition in winter wheat. Agricultural Water Management, 2021, 255:107050.
doi: 10.1016/j.agwat.2021.107050
[4] 陈惠哲, 朱德峰, 林贤青, 等. 促花肥施氮对超级杂交稻冠层叶片生长及光合速率的影响. 湖南农业大学学报(自然科学版), 2007, 33(5):617-621.
[5] 田永超, 曹卫星, 王绍华, 等. 不同水、氮条件下水稻不同叶位水、氮含量及光合速率的变化特征. 作物学报, 2004, 30(11):1129-1134.
[6] Gu J, Yang J. Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop and Environment, 2022, 1(1):7-14.
doi: 10.1016/j.crope.2022.03.003
[7] 田昌玉, 孙文彦, 林治安, 等. 氮肥利用率的问题与改进. 中国土壤与肥料, 2016(4):9-16.
[8] 仇景涛, 吴壮, 蒋天昊, 等. 不同生育时期氮肥减施对水稻群体生产特征的影响及减肥策略初步分析. 扬州大学学报(农业与生命科学版), 2020, 41(3):52-58.
[9] 侯静华, 李良君, 杜晓宁. 稳定性同位素15N在我国农业研究中的应用. 化肥工业, 2003(6):11-13.
[10] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000:30-109.
[11] Wang D Y, Xu C M, Yan J X, et al. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crops Research, 2017, 211:27-36.
doi: 10.1016/j.fcr.2017.06.017
[12] 李鹏飞, 李小坤, 侯文峰, 等. 应用15N示踪技术研究控释尿素在稻田中的去向及利用率. 中国农业科学, 2018, 51(20):3961-3971.
doi: 10.3864/j.issn.0578-1752.2018.20.014
[13] Tabatabai M A. Enzymes Methods of soil analysis// Weaver R W, Augle S, Bottomly P J, et al. Microbiological and Biochemical Properties, No. 5. Soil Science Society of America Madison, 1994:775-833.
[14] Johnson J L, Temple K L. Some variables affecting the measurement of “catalase activity” in soil. Soil Science Society of America Journal, 1964, 28(2):207-209.
doi: 10.2136/sssaj1964.03615995002800020024x
[15] 李艳, 唐良梁, 陈义, 等. 施氮量对水稻氮素吸收、利用及损失的影响. 土壤通报, 2015, 46(2):392-397.
[16] 贺帆, 黄见良, 崔克辉, 等. 实时实地氮肥管理对不同杂交水稻氮肥利用率的影响. 中国农业科学, 2008, 41(2):470-479.
[17] 宫亮, 金丹丹, 牛世伟, 等. 长期定位氮肥减施对水稻产量和氮素吸收利用的影响. 中国稻米, 2022, 28(3):42-46.
doi: 10.3969/j.issn.1006-8082.2022.03.007
[18] 孙会峰, 周胜, 付子轼, 等. 秸秆与缓释肥配施对水稻产量及氮素吸收利用率的影响. 中国稻米, 2015, 21(4):95-98.
doi: 10.3969/j.issn.1006-8082.2015.04.021
[19] 褚光, 展明飞, 朱宽宇, 等. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42(7):1026-1036.
[20] 吴珊眉, 倪苗娟. 有机―无机态肥氮在微型农业生态系统的转移和循环研究. 应用生态学报, 1990, 1(1):67-74.
[21] 李婷婷. 干湿交替灌溉对水稻土壤性状、根系生长和产量形成的影响. 扬州:扬州大学, 2020.
[22] 张翰林, 郭惠宝, 杨业凤, 等. 化肥有机肥配施对稻麦轮作系统作物产量和土壤肥力的影响. 上海农业学报, 2022, 38(3):48-53.
[1] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[2] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[3] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[4] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[5] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[6] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
[7] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[8] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[9] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[10] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[11] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[12] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[13] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[14] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[15] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!