Crops ›› 2024, Vol. 40 ›› Issue (1): 166-173.doi: 10.16035/j.issn.1001-7283.2024.01.022

;

Previous Articles     Next Articles

Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice

Xiong Xin1(), Deng Jun1, Shang Liyan1, Sheng Tian1, Ye Jiayu1, Liu Zichen1, Huang Liying1,2, Zhang Yunbo1,2()   

  1. 1Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs / College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Engineering Research Center of Ecology and Agricultural Use of Wetland / College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2022-09-18 Revised:2022-10-18 Online:2024-02-15 Published:2024-02-20
  • Contact: Zhang Yunbo E-mail:xiongxin199702@163.com;yzhang@yangtzeu.edu.cn

Abstract:

Field experiments with two hybrid rice variety (Y-Liangyou 900 and Quanyouhuazhan), three N applications (90, 120 and 180 kg N/ha) and three K applications (120, 160 and 210 kg K/ha) were conducted in clarify the effects of nitrogen (N) and potassium (K) fertilizer interaction on grain yield, dry matter accumulation and radiation use efficiency of hybrid rice. The main results showed that the grain yields were significantly affected by N and K fertilizer interaction effects. The highest yield of Y-Liangyou 900 and Quanyouhuazhan were achieved under N2K3 and N3K3 treatments, which were 9.33 and 9.66 t/ha, respectively. Analysis of yield components showed that under low nitrogen level, the effects of increased K fertilizer on seed-setting rate was significant, in which K2 increased by 3.2% compared with K1 treatment, K3 increased by 5.6% compared with K1 treatment. The number of spikelets per panicle and seed-setting rate were significantly improved by increasing K fertilizer application at medium and high N levels. In addition, increasing K fertilizer improved dry matter accumulation, canopy light interception percentage (IP), intercepted photosynthetically active radiation (IPAR) and radiation use efficiency (RUE) of Y-Liangyou 900 and Quanyouhuazhan, and correlation analysis showed that IP, IPAR and RUE were positively correlated with yield. Therefore, moderate increasing K with reduced N fertilizer application could improve RUE, increase dry matter accumulation, and then increase seed-setting rate and yield of hybrid rice.

Key words: Hybrid Rice, Yield, Nitrogen fertilizer, Potassium fertilizer, Radiation use efficiency

Fig.1

Daily maximum, minimum temperatures and average solar radiation during rice-growing season in 2020 and 2021"

Table 1

Information about varieties used in the experiment"

品种
Variety
类型
Type
审定年份
Year of
release
母本
Female
parent
父本
Male
parent
Y两优900
Y-Liangyou 900
籼型杂交稻 2015 Y 58S R 900
荃优华占
Quanyouhuazhan
籼型杂交稻 2017 荃9311A 华占

Table 2

Effects of different nitrogen and potassium fertilizer levels on the yield and its components of hybrid rice in 2020"

品种
Variety
氮肥
Nitrogen
钾肥
Potassium
有效穗数(穗/m2
Effective panicles (panicle/m2)
每穗颖花数
Spikelets per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield (t/hm2)
Y两优900
Y-Liangyou 900
N1 K1 181.1de 278.8bc 84.3c 20.2a 7.11f
K2 177.6e 279.8bc 88.1ab 20.2a 7.47e
K3 188.1d 283.2bc 88.3ab 20.2a 7.65de
N2 K1 207.2ab 277.0c 83.4c 20.3a 8.10d
K2 212.4a 285.3bc 84.8c 20.4a 8.51b
K3 196.6c 297.4a 86.1bc 20.4a 9.03a
N3 K1 201.9bc 285.5bc 84.9c 20.5a 8.16cd
K2 207.2ab 286.6b 88.7ab 20.5a 8.21cd
K3 198.5c 297.6a 90.3a 20.4a 8.33bc
平均 196.7 285.7 86.6 20.3 8.06
荃优华占
Quanyouhuazhan
N1 K1 240.1b 186.7cd 83.7ab 22.4abc 7.05g
K2 215.8c 187.2cd 83.8ab 22.6ab 7.12g
K3 215.8c 187.9cd 85.9a 22.2bcd 7.44f
N2 K1 236.7b 183.4d 82.8b 22.8a 7.75e
K2 217.6c 193.4c 84.8ab 22.6ab 8.02d
K3 212.4c 208.7b 86.4a 22.8a 8.18cd
N3 K1 261.0a 186.2cd 84.1ab 22.9a 8.22c
K2 238.4b 191.8cd 84.7ab 22.2cd 8.53b
K3 236.7b 219.3a 85.5a 21.9d 8.79a
平均 230.5 193.8 84.7 22.5 7.90
差异分析Analysis of variance
品种Variety (V) * ** ** ** **
氮肥Nitrogen (N) ** ** ns ns **
钾肥Potassium (K) ** ** ** ns **
氮肥×品种N×V ** ns ns * ns
钾肥×品种K×V ** ns ns ns *
氮肥×钾肥N×K ns * ns ns **
氮肥×钾肥×品种N×K×V ns ns ns ns **

Table 3

Effects of different nitrogen and potassium fertilizer levels on the yield and its components of hybrid rice in 2021"

品种
Variety
氮肥
Nitrogen
钾肥
Potassium
有效穗数
Effective panicles (/m2)
每穗颖花数
Spikelets per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield (t/hm2)
Y两优900
Y-Liangyou 900
N1 K1 154.3d 342.5f 74.6bcd 21.0b 8.78f
K2 157.6cd 352.5ef 77.5ab 21.3b 8.85f
K3 164.7c 358.5de 79.8a 21.2b 8.95e
N2 K1 181.4b 373.5bc 73.4cd 21.8a 9.08d
K2 188.5ab 381.9ab 73.9cd 21.4ab 9.57a
K3 183.3b 384.7a 77.4a 21.3b 9.63a
N3 K1 186.0ab 367.6cd 71.7d 21.3b 9.19c
K2 193.8a 370.4c 74.7bcd 21.3b 9.27bc
K3 188.5ab 371.8bc 76.6abc 21.2b 9.33b
平均 177.5 366.9 75.5 21.3 9.19
荃优华占
Quanyouhuazhan
N1 K1 181.8c 289.1f 69.4de 21.9a 8.80h
K2 182.5c 291.9f 72.6bcd 22.1a 9.09g
K3 184.1c 305.3e 75.4ab 21.9a 9.20f
N2 K1 198.0b 327.6d 69.0e 21.8a 9.37e
K2 199.2b 328.8cd 72.6bcd 21.9a 9.73d
K3 206.4b 338.8bc 76.4a 22.1a 10.12c
N3 K1 220.3a 339.5bc 71.8cde 21.7a 10.15c
K2 221.7a 347.5ab 72.4bcde 22.1a 10.36b
K3 216.6a 353.1a 75.0abc 21.7a 10.54a
平均 201.2 324.6 72.7 21.9 9.70
差异分析Analysis of variance
品种Variety (V) * ** ** ** **
氮肥Nitrogen (N) ** ** ns * **
钾肥Potassium (K) ns ** ** * **
氮肥×品种N×V * ** ns ns **
钾肥×品种K×V ns ns ns ns **
氮肥×钾肥N×K ns ns ns ns **
氮肥×钾肥×品种N×K×V ns ns ns ns *

Fig.2

Effects of different nitrogen and potassium fertilizer treatments on dry matter accumulation of Y-Liangyou 900 and Quanyouhuazhan in 2020 and 2021 Different lowercase letters indicate significant difference at P < 0.05 level."

Table 4

Effects of different nitrogen and potassium fertilizer levels on the radiation use efficiency of hybrid rice in 2020"

品种
Variety
氮肥
Nitrogen
钾肥
Potassium
入射辐射
Incident radiation (MJ/m2)
冠层光截获率
IP (%)
截获辐射
IPAR (MJ/m2)
成熟期干物质
Dry matter at maturity (g/m2)
辐射利用率
RUE (g/MJ)
Y两优900
Y-Liangyou 900
N1 K1 1591.4 75.4d 539.7d 1117.3f 2.07c
K2 1608.7 76.0bcd 550.4cd 1144.6f 2.08c
K3 1622.9 77.7ab 567.2ab 1215.3e 2.14c
N2 K1 1608.7 75.8cd 548.7d 1256.4d 2.29b
K2 1622.9 76.9bcd 562.1bc 1339.8b 2.38a
K3 1623.9 79.0a 577.2a 1404.0a 2.43a
N3 K1 1622.9 77.7ab 563.8b 1266.5d 2.25b
K2 1623.9 77.3abc 567.2ab 1290.8cd 2.28b
K3 1625.4 78.9a 577.2a 1320.2bc 2.29b
平均 1616.8 77.1 561.3 1261.6 2.25
荃优华占
Quanyouhuazhan
N1 K1 1529.9 77.5c 533.8e 1013.5f 1.90d
K2 1532.7 78.0bc 538.1de 1036.0f 1.92d
K3 1539.3 79.9a 553.4bc 1093.4e 1.98cd
N2 K1 1532.7 79.4ab 547.9cd 1162.7d 2.12c
K2 1539.3 79.6ab 551.7bc 1196.2d 2.17bc
K3 1556.7 80.2a 561.6ab 1246.1c 2.22b
N3 K1 1539.3 79.6ab 551.8bc 1298.6b 2.35a
K2 1556.7 80.6a 564.3ab 1334.4ab 2.37a
K3 1563.4 80.8a 568.3a 1351.9a 2.38a
平均 1543.3 79.5 552.3 1192.5 2.16
差异分析Analysis of variance
品种Variety (V) ** ns * ns
氮肥Nitrogen (N) * ** ** **
钾肥Potassium (K) ** ** ** *
氮肥×品种N×V ns ns ** **
钾肥×品种K×V ns ns ns ns
氮肥×钾肥N×K ns ns ns ns
氮肥×钾肥×品种N×K×V ns ns ns ns

Table 5

Effects of different nitrogen levels and potassium levels on the radiation use efficiency of hybrid rice in 2021"

品种
Variety
氮肥
Nitrogen
钾肥
Potassium
入射辐射
Incident radiation (MJ/m2)
冠层光截获率
IP (%)
截获辐射
IPAR (MJ/m2)
成熟期干物质
Dry matter at maturity (g/m2)
辐射利用率
RUE (g/MJ)
Y两优900
Y-Liangyou 900
N1 K1 1822.9 87.1bc 714.9c 1392.2f 1.94bc
K2 1844.1 87.2bc 723.5bc 1413.3ef 1.95bc
K3 1864.0 88.7b 744.1b 1452.1de 1.95bc
N2 K1 1844.1 85.8c 711.8c 1453.4de 2.04b
K2 1864.0 87.4bc 732.9bc 1631.6ab 2.22ab
K3 1878.8 87.7bc 741.1b 1687.7a 2.28a
N3 K1 1864.0 92.0a 771.71a 1478.6d 1.92c
K2 1878.8 92.4a 781.6a 1556.4c 1.99bc
K3 1896.6 92.6a 790.4a 1605.5bc 2.03b
平均 1861.9 89.0 745.8 1519.0 2.05
荃优华占
Quanyouhuazhan
N1 K1 1655.0 85.2e 634.7f 1435.8h 2.26de
K2 1675.1 85.6de 645.0ef 1496.8g 2.32d
K3 1694.9 88.0cde 671.1d 1562.5f 2.33d
N2 K1 1675.1 88.4cd 666.0de 1634.9e 2.46c
K2 1694.9 89.2bc 680.4cd 1698.9d 2.50bc
K3 1715.1 90.6abc 699.7bc 1751.0cd 2.50bc
N3 K1 1694.9 91.6ab 698.8bc 1803.5bc 2.58b
K2 1715.1 92.9a 716.9ab 1855.3b 2.59b
K3 1721.2 93.3a 722.6a 1972.0a 2.73a
平均 1693.5 89.4 681.7 1690.1 2.47
差异分析Analysis of variance
品种Variety (V) ns ** ** **
氮肥Nitrogen (N) ** ** ** **
钾肥Potassium (K) ** ** ** **
氮肥×品种N×V ns ns ** **
钾肥×品种K×V ns ns ns ns
氮肥×钾肥N×K ns ns ns ns
氮肥×钾肥×品种N×K×V ns ns ns ns

Fig.3

Correlations among grain yield and its components, total dry weight at maturity and radiation use efficiency in 2020-2021 Y: yield; P: effective panicles; SP: spikelets per panicle; SR: seed- setting rate; GW: 1000-grain weight; IP: canopy light interception percentage; IR: incident radiation; IPAR: intercepted photosynthetically active radiation; RUE: radiation use efficiency; TDW: total dry weight."

[1] 杨万江. 水稻发展对粮食安全贡献的经济学分析. 中国稻米, 2009(3):1-4.
[2] 袁隆平. 中国的杂交水稻. 中国水稻科学, 1986, 1(1):8-18.
[3] 赵凌, 赵春芳, 周丽慧, 等. 中国水稻生产现状与发展趋势. 江苏农业科学, 2015, 43(10):105-107.
[4] 张满利, 陈盈, 侯守贵, 等. 氮肥运筹对水稻产量和氮肥利用率的影响. 作物杂志, 2010(6):46-50.
[5] Peng S B, Buresh R, Huang J L, et al. Improving nitrogen fertilization in rice by site specific N management. A review. Agronomy for Sustainable Development, 2010, 30:649-656.
doi: 10.1051/agro/2010002
[6] 朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点. 南京农业大学学报, 2000, 23(4):5-8.
[7] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2):259-273.
[8] Ye T H, Xue X X, Lu J W, et al. Yield and potassium uptake of rice as affected by potassium rate in the middle reaches of the Yangtze River, China. Agronomy Journal, 2020, 112(2):1318-1329.
doi: 10.1002/agj2.v112.2
[9] 王强盛, 甄若宏, 丁艳锋, 等. 钾肥用量对优质粳稻钾素积累利用及稻米品质的影响. 中国农业科学, 2004, 37(10):1444-1450.
[10] Liu K, Yang R, Lu J, et al. Radiation use efficiency and source- sink changes of super hybrid rice under shade stress during grain-filling stage. Agronomy Journal, 2019, 111(4):1788-1798.
doi: 10.2134/agronj2018.10.0662
[11] 杨建昌, 王朋, 刘立军, 等. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32(7):949-955.
[12] Huang L Y, Sun F, Yuan S, et al. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Research, 2018, 216:150-157.
doi: 10.1016/j.fcr.2017.11.019
[13] 彭少兵, Christian W, 黄见良, 等. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35(9):1095-1103.
[14] Du M, Zhang W Z, Gao J P, et al. Improvement of root characteristics due to nitrogen, phosphorus, and potassium interactions increases rice (Oryza sativa L.) yield and nitrogen use efficiency. Agronomy, 2022, 12(1):23.
doi: 10.3390/agronomy12010023
[15] 潘兴书, 冯跃华, 赵田径, 等. 不同施氮条件下2个超级杂交稻干物质生产特性. 江苏农业学报, 2009, 25(4):726-730.
[16] Zhang H M, Xu M G, Shi X J, et al. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China. Nutrient Cycling in Agroecosystems, 2010, 88(3):341-349.
doi: 10.1007/s10705-010-9359-3
[17] 张丰转, 金正勋, 马国辉, 等. 水稻抗倒性与茎秆形态性状和化学成分含量间相关分析. 作物杂志, 2010(4):15-19.
[18] 郭玉华, 朱四光, 龙步. 不同栽培条件对水稻茎秆生化成分的影响. 沈阳农业大学学报, 2003, 34(2):89-91.
[19] 罗茂春, 田翠婷, 李晓娟, 等. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27(11):2346-2353.
[1] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[2] Wang Jiaxu, Zhang Fei, Zhang Kuangye, Ke Fulai, Wang Yanqiu, Lu Feng, Zhu Kai. Effects of Reducing Nitrogen Fertilizers and Increasing DMPP on Nitrogen Absorption and Utilization in Sorghum [J]. Crops, 2024, 40(1): 126-131.
[3] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[4] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[5] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[6] Xie Hao, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Yang Jianchang, Gu Junfei. Analysis of Nitrogen Use Efficiency of Base Fertilizer of Rice under Different Crop Management Practices by Using 15N Labeling [J]. Crops, 2024, 40(1): 90-96.
[7] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[8] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[9] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[10] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[11] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[12] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[13] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[14] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[15] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!