Crops ›› 2021, Vol. 37 ›› Issue (3): 34-39.doi: 10.16035/j.issn.1001-7283.2021.03.005

Previous Articles     Next Articles

Screening of Elite Germplasms and Identification of Seed Tocopherol and Its Component Contents in Soybean

Qin Ning(), Li Junru, Li Wenlong, Du Hui, Li Xihuan(), Zhang Caiying   

  1. Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, Hebei, China
  • Received:2020-06-30 Revised:2021-04-16 Online:2021-06-15 Published:2021-06-22
  • Contact: Li Xihuan E-mail:1362822834@qq.com;lixihuan@hebau.edu.cn

Abstract:

Tocopherol (vitamin E) has many important medical functions, such as preventing and curing arteriosclerosis, lowering cholesterol, enhancing blood circulation, preventing and curing cardiovascular diseases, and so on. Soybean contains a relatively higher amount tocopherol than other plants, while need more widely elite germplasm identification and further studies. Because of this, two hundred and ninety-nine soybean varieties were analyzed for their tocopherol and its component contents through the high performance liquid chromatography (HPLC) method, and the genetic variations, correlation relationships, and elite germplasms were screened out. The results showed that it existed relative wide genetic variations of tocopherol and its components in the soybeans, and the δ-, γ-, α-, total tocopherol contents were 44.15, 143.05, 66.81, and 254.01μg/g, respectively, with the variation coefficients 15.37%-38.04%, the variation coefficients of α-tocopherol was the highest. The ratio of δ-/total, γ-/total, α-/total were 17.47%, 56.57%, and 25.96%, respectively, with the variation coefficients of 11.78%-32.21%, the ratio of α-/total was the highest. Meanwhile, highly significant correlations were detected between the total tocopherol and its three components, and the correlations between δ- and γ-, α-tocopherol were also extremely significant. Based on the contents of tocopherol and its components, the soybean varieties were divided into three groups, and thirteen elite germplasms with higher tocopherol contents were screened out, including Heihe 44, Hefeng 50, Henong 75, and Suinong 28 which can be used in the genetic improvement of tocopherol and its component contents through conventional and molecular breeding methods in the future.

Key words: Soybean, Tocopherol, High performance liquid chromatography, Elite germplasms

Table 1

Genetic variation of tocopherol and its component contents in soybean varieties"

项目
Item
均值
Mean
最大值
Max
最小值
Min
标准差
SD
变异系数
CV (%)
偏度
Skew
峰度
Kurt
品种间显著性
Significance
of varieties
δ-生育酚 δ-tocopherol (μg/g) 44.15 86.92 20.88 11.63 26.33 0.39 0.36 ***
γ-生育酚 γ-tocopherol (μg/g) 143.05 207.09 81.23 24.01 16.78 -0.04 0.05 ***
α-生育酚 α-tocopherol (μg/g) 66.81 163.49 4.38 25.42 38.04 0.56 0.81 ***
总生育酚 Total tocopherol (μg/g) 254.01 382.86 148.95 39.04 15.37 0.12 0.24 ***
δ-生育酚与总生育酚比值 δ-/total tocopherol (%) 17.47 29.62 8.23 4.08 23.37 0.22 0.03 ***
γ-生育酚与总生育酚比值 γ-/total tocopherol (%) 56.57 78.17 34.83 6.66 11.78 -0.20 1.02 ***
α-生育酚与总生育酚比值 α-/total tocopherol (%) 25.96 55.44 2.23 8.36 32.21 0.51 1.01 ***

Fig.1

The distribution of tocopherol and its component contents in soybean varieties"

Table 2

Correlation analysis of tocopherol and its component contents in soybean varieties"

项目Item γ-生育酚
γ-tocopherol
α-生育酚
α-tocopherol
总生育酚
Total tocopherol
δ-生育酚比值
δ-/total tocopherol
γ-生育酚比值
γ-/total tocopherol
α-生育酚比值
α-/total tocopherol
δ-生育酚 δ-tocopherol 0.452** -0.156** 0.474** 0.798** 0.005 -0.394**
γ-生育酚 γ-tocopherol 0.006 0.753** -0.002 0.437** -0.347**
α-生育酚 α-tocopherol 0.608** -0.569** -0.803** 0.918**
总生育酚 Total tocopherol -0.134* -0.253** 0.267**
δ-生育酚比值 δ-/total tocopherol 0.163** -0.618**
γ-生育酚比值 γ-/total tocopherol -0.876**

Table 3

Cluster analysis of tocopherol and its component contents in soybean varieties μg/g"

类别
Type
品种
Variety
生育酚总量均值
Mean of total tocopherol contents
Ⅰ类:高含量
TypeⅠ:High content
黑河44、合丰50、合农75、绥农28、合丰55、哈12-4547、辽豆26、北疆九1号、永丰豆、绥农35、圣168、宾县黑豆、绥农15、垦豆40、海6055、合农68、抗线9号、垦丰18、合交02-69、辽10Q015、合丰41、合农66、吉育48、蒙豆9号、蒙豆36、吉育101、哈14-2146、黑河41、黑河9号、哈11-4519、绥农14、绥农1号、哈13-2089、东农42、合丰53、黑河33等 319.37
Ⅱ类:低含量
TypeⅡ:Low content
合农69、青豆、紫花2、宝青绿大豆、东农47、辽青豆1号、东农57、绿瓤黑豆、青杂豆、绥农70、佳黑秣食豆、茶秣食豆、合丰38、吉原引3号、黑豆、合农71、吉育86、合农67、北丰16 178.30
Ⅲ类:中间含量
Type Ⅲ:Medium content
吉育204、绥农26、长春满仓金、绥08-5331、绥农52、吉育401、哈14-2028、合丰35、嫩丰16、东农50、黑河40、绥农43、合丰46、永吉枣豆、北疆193、哈13-613、黑河54、黑河38、绥农69、吉育71、绥农83、合丰44、绥农53、哈11-4142、合农97、合农76、合丰48、黑河09-3311、合丰42、合丰37、吉育108、辽小粒豆2、北豆5、黑河45、甘248、疆丰23-3412、北豆19、合农60、辽08Q104、黑河10、绥农36、华疆4403、黑河55、东农4、合农70、合丰52、合丰57、汇农10-06、黄大粒、丰收1、丰收10号、北豆36、极早黄、中黄901、丰豆23、黑河7、吉育302、蒙豆34、黑河21、黑河37、合丰56、龙垦316、绥农10号、内豆4号、东农56、黑河4、绥农11、绥农4号、大红脐、龙垦330、嫩良7号、黑河12、东农4211、牛毛黄、合丰51、呼交282、北丰9、绥农79、绥农34、黑河31、黑河43、黑河18、哈13-2185、黑河3、蒙豆28、吉育406、绥农82、绥黑大豆1号、黑河48、绥农6、舒兰满仓金、桦南小金豆、中作引1号、合丰29、绥农22等 249.98

Table 4

The soybean germplasms with high tocopherol and its component contents in seed μg/g"

品种Variety 总生育酚Total tocopherol δ-生育酚 δ-tocopherol γ-生育酚 γ-tocopherol α-生育酚 α-tocopherol
黑河44 Heihe 44 382.86 68.53 186.18 128.16
合丰50 Hefeng 50 351.36 46.67 193.58 111.11
合农75 Henong 75 350.05 54.80 186.60 108.64
绥农28 Suinong 28 347.34 54.07 196.09 97.18
合丰55 Hefeng 55 343.02 35.71 206.16 101.15
哈12-4547 Ha12-4547 338.39 86.92 178.46 73.01
哈13-2089 Ha13-2089 335.30 45.03 137.17 153.10
蒙豆9号Mengdou 9 332.78 55.27 207.09 70.42
蒙豆36 Mengdou 36 323.37 54.01 198.52 70.84
辽10Q015 Liao10Q015 316.74 75.64 178.82 62.27
东农42 Dongnong 42 303.55 37.34 125.38 140.83
绥农1号 Suinong 1 294.92 24.28 107.14 163.49
东辽克霜Dongliaokeshuang 281.72 83.46 166.13 32.13
[1] Patil G, Mian R, Vuong T , et al. Molecular mapping and genomics of soybean seed protein:a review and perspective for the future. Theoretical and Applied Genetics, 2017,130:1975-1991.
doi: 10.1007/s00122-017-2955-8
[2] Leamy L J, Zhang H Y, Li C B , et al. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics, 2017,18:18.
doi: 10.1186/s12864-016-3397-4
[3] Li X H, Shao Z Q, Tian R , et al. Mining QTLs and candidate genes for seed protein and oil contents across multiple environments and backgrounds in soybean. Molecular Breeding, 2019,39:139.
doi: 10.1007/s11032-019-1055-7
[4] Cao Y C, Li S G, Wang Z L , et al. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Frontiers in Plant Science, 2017,8:1222.
doi: 10.3389/fpls.2017.01222
[5] Behl C . Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-β estradiol and induces the activity of the transcription factor NF-κB. Journal of Neural Transmission, 2000,107:393-407.
pmid: 11215751
[6] Meng S, He J B, Zhao T J , et al. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theoretical and Applied Genetics, 2016,129:1557-1576.
doi: 10.1007/s00122-016-2724-0
[7] 崔洪斌 . 大豆生物活性物质的开发与应用. 北京: 中国轻工业出版社, 2001.
[8] 王丽, 宋志峰, 纪锋 , 等. 高效液相色谱法测定大豆中的维生素E含量及其与粗脂肪含量的线性回归分析. 大豆科学, 2006,25(2):113-117.
[9] 李源龙, 章灵敏, 周龙华 , 等. 油料作物种子维生素E含量和组分改良的分子育种研究. 农业生物技术学报, 2013,21(8):974-983.
[10] Traber M G, Sies H . Vitamin E in humans:demand and delivery. Annual Review of Nutrition, 1996,16:321-347.
doi: 10.1146/annurev.nu.16.070196.001541
[11] 张红梅, 李海朝, 文自翔 , 等. 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015,41(2):187-196.
[12] 李海燕, 韩英鹏, 刘焕成 , 等. 高效液相色谱法测定黑龙江省南部地区大豆维生素E含量的研究. 作物杂志, 2013(6):79-82.
[13] 李卫东, 卢为国, 梁慧珍 , 等. 大豆籽粒维生素E含量与生态因子关系的研究. 作物学报, 2007,33(7):1094-1099.
[14] 赵霞, 曹改萍, 王敏 , 等. 不同类型大豆萌发期维生素E组分及含量的比较. 中国粮油学报, 2020,35(8):48-55,83.
[15] 王丽, 宋志峰, 金卫东 , 等. 栽培大豆与野生大豆维生素E含量的比较分析. 作物杂志, 2005(5):23-24.
[16] 李桂华, 代红丽, 王学东 , 等. 高压液相色谱法测定我国与美国大豆中维生素E含量. 河南工业大学学报(自然科学版), 2006,27(2):1-4.
[17] 刘焕成, 韩英鹏, 腾卫丽 , 等. 东北大豆与北美大豆维生素E含量的分析. 大豆科学, 2008,27(6):925-928.
[18] 代红丽, 魏安池, 李桂华 , 等. 不同来源大豆中生育酚含量的HPLC测定与比较. 中国油脂, 2006,31(2):47-49.
[19] 罗健, 冯雷, 李冬梅 , 等. 不同大豆品种籽粒维生素E含量积累比较分析. 大豆科学, 2017,36(2):250-255.
[20] 杨春, 齐海英 . 马铃薯种质资源表型性状的遗传多样性分析. 农学学报, 2020,10(1):13-21.
[21] 蒋卉, 韩爱芝, 蔡雨晴 , 等. 新疆引进红枣中微量元素和重金属含量的测定与聚类分析. 食品科学, 2016,37(6):199-203.
[22] Bramley P M, Elmadfa I, Kafatos A , et al. Vitamin E. Journal of the Science of Food and Agriculture, 2000,80:913-938.
doi: 10.1002/(ISSN)1097-0010
[23] Munne-Bosch S . The role of α-tocophherol in plant stress tolerance. Journal of Plant Physiology, 2005,162:743-748.
doi: 10.1016/j.jplph.2005.04.022
[24] 刘焕成, 李文滨, 韩英鹏 , 等. 大豆维生素E与主要农艺性状和品质性状的相关性分析. 大豆科学, 2011,30(1):89-91.
[25] 赵霞, 曹改萍, 王敏 , 等. 高效液相色谱法测定大豆维生素 E 方法的优化. 山西农业科学, 2020,48(4):520-526.
[26] Park C, Dwiyanti M S, Nagano A J , et al. Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biology, 2019,19:510.
doi: 10.1186/s12870-019-2117-z
[1] Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58.
[2] Chu Guanghong, Zhang Jianxin, Wang Cong, Zhao Zhanying. Effects of Topping at Different Nodes at Seedling Stage on Root Growth and Yield of High-Yield Spring Soybean [J]. Crops, 2021, 37(3): 195-201.
[3] Su Yang, Yang Jing, Guo Yong, Du Weijun, Qiu Lijuan. Whole Genome Discovery and Analysis of Genes Related to 100-Seed Weight in Soybean [J]. Crops, 2021, 37(3): 8-18.
[4] Li Candong, Guo Tai, Wang Zhixin, Zheng Wei, Zhao Haihong, Zhang Zhenyu, Xu Jiefei, Guo Meiling. Evaluation and Determination of Yield Evaluation Indicators of Soybean Mainly Cultivated Varieties in the Central and Eastern of Heilongjiang Province [J]. Crops, 2021, 37(2): 45-51.
[5] Wang Caijin, Di Wenjing, Ma Shumei, Wang Yang. Mining the Elite Allele of Resistance of Cercospora sojina Hara Race 1 in Soybean Resources [J]. Crops, 2020, 36(6): 189-196.
[6] Zhao Yuyang, Song Jian, Qiu Lijuan. Proteomic Comparation Analysis of Thylakoid in Leaves of G-Locus Near Isogenic Line in Soybean [J]. Crops, 2020, 36(6): 8-16.
[7] Chang Shihao, Yang Qingchun, Shu Wentao, Li Jinhua, Li Qiong, Zhang Baoliang, Zhang Donghui, Geng Zhen. Comprehensive Analysis of Main Agronomic Traits of Summer Sowing Soybean Varieties (Lines) in Huang-Huai-Hai Region [J]. Crops, 2020, 36(3): 66-72.
[8] Xu Ran, Wang Caijie, Zhang Lifeng, Li Wei, Zhang Yanwei, Lin Yanhui, Li Weiu. The Breeding of Soybean Variety Qihuang 34 by Phenotypic Design Breeding Technology [J]. Crops, 2020, 36(3): 73-78.
[9] Huang Junxia,Huang Tian,Rao Demin,Zhang Minghao,Meng Fangang,Yan Xiaoyan,Zhang Wei. Effects of Water and Fertilizer Integration and Chemical Control Measures after Flowering on Soybean Yield and Physiological Characteristics [J]. Crops, 2020, 36(2): 82-87.
[10] Wang Mingyao,Cao Liang,Yu Qi,Zou Jingnan,He Songyu,Qin Bin,Wang Mengxue,Zhang Yuxian. Effects of Melatonin Soaking on Germination of Soybean Seeds under Saline-Alkali Stress [J]. Crops, 2019, 35(6): 195-202.
[11] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties [J]. Crops, 2019, 35(5): 41-45.
[12] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance [J]. Crops, 2019, 35(4): 10-16.
[13] Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65.
[14] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[15] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!