Crops ›› 2021, Vol. 37 ›› Issue (3): 28-33.doi: 10.16035/j.issn.1001-7283.2021.03.004

Previous Articles     Next Articles

Difference in Nitrogen Absorption and Transportation and Utilization of Rapeseed Germplasms with Contrasting Nitrogen Efficiency

Qin Lu1(), Wang Jianqiang1,2(), Han Peipei1,3, Li Yinshui1, Gu Chiming1, Hu Xiaojia1, Xie Lihua1, Liao Xing1()   

  1. 1Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Qingdao Kingagroot Compound Co., Ltd., Qingdao 266000, Shandong, China
    3Institute of Agriculture Sciences in Jiangsu Coastal Area, Yancheng 224002, Jiangsu, China
  • Received:2020-06-18 Revised:2020-07-31 Online:2021-06-15 Published:2021-06-22
  • Contact: Liao Xing E-mail:123@126.com;18615083316@163.com;liaox@oilcrops.cn

Abstract:

The study of nitrogen (N) efficiency is the prerequisite for genetic improvement of nutritional traits in rapeseed (Brassica napus L.). In order to investigate the possible differences in N absorption, transportation, and utilization of rapeseed with different N efficiency at seedling stage, two rapeseed germplasms with contrasting N efficiency, H6 (N-efficient germplasm) and L18 (N-inefficient germplasm), were used as the materials. By using hydroponic cultures with normal N (CK) and low N (LN) treatments for 14 days, the N content, N accumulation, N transport coefficient, and N utilization efficiency were measured. The results showed that the N absorption, transportation, and utilization efficiency in rapeseed seedlings at two N levels reached extremely significant levels (P<0.01). Compared with CK conditions, the biomass, N content, and N accumulation of rapeseed were significantly decreased under LN, while the N utilization efficiency and root-shoot ratio were significantly increased. In addition, the biomass, N accumulation, N transport coefficient, and N utilization efficiency of N-efficient rapeseed germplasm H6 were significantly higher than that of N-inefficient germplasm L18 under LN conditions. In detail, the biomass, N accumulation, N transport coefficient, and N physiological utilization rate of H6 were 2.07, 1.42, 3.23, and 1.56 times as much as L18, respectively. The possible mechanisms underlying rapeseed with different N efficiency at seedling stage were elucidated from the absorption, transportation, and utilization process of N. These results may provide useful information for investigating the mechanism underlying N efficiency and genetic improvement of N efficiency in rapeseed breeding.

Key words: Rapeseed, Low N stress, N efficiency, Absorption and transportation, Utilization

Table 1

The formula of nutrient solution"

化学试剂
Chemical agent
浓度Concentration (μmol/L)
CK LN
Ca(NO3)2·4H2O 2500 50
KNO3 2500 50
NH4NO3 1000 20
KH2PO4 500 500
MgSO4·7H2O 1000 1000
EDTA-Fe 40 40
K2SO4 250 1250
CaCl2 0 2500
MnCl2·4H2O 4.5 4.5
ZnSO4·7H2O 0.3 0.3
CuSO4·5H2O 0.16 0.16
H3BO3 20 20
(NH4)6Mo7O24·4H2O 0.16 0.16

Table 2

Comparison of biomass and root-shoot ratio in rapeseed germplasms with contrasting N efficiency at different N levels"

种质编号
Germplasm number
处理
Treatment
地上部干重
Shoot dry weight (g)
根干重
Root dry weight (g)
生物量
Biomass dry weight (g)
根冠比
Ratio of root to shoot
H6 CK 0.232±0.022a 0.036±0.003a 0.269±0.024a 0.158±0.010c
LN 0.080±0.016b 0.033±0.003a 0.114±0.018b 0.425±0.009b
LN/CK 0.34 0.92 0.42 2.69
L18 CK 0.224±0.018a 0.033±0.003a 0.257±0.020a 0.155±0.009c
LN 0.035±0.015c 0.019±0.003b 0.055±0.017c 0.541±0.010a
LN/CK 0.16 0.58 0.21 3.49

Fig.1

Comparison of N accumulation in rapeseed germplasms with contrasting N efficiency at different N levels Different lowercase letters indicate significant difference at 5% level, the same below"

Table 3

Comparison of N content and transport coefficient in rapeseed germplasms with contrasting N efficiency at different N levels"

种质编号
Germplasm number
处理
Treatment
地上部氮含量
Shoot N content (mg/g)
根系氮含量
Root N content (mg/g)
整株氮含量
Total N content (mg/g)
转运系数
Transport coefficient
H6 CK 36.70±0.15a 50.48±0.01a 38.56±0.13a 0.72±0.01b
LN 14.91±0.05c 28.59±0.05b 18.98±0.05d 0.52±0.01c
LN/CK 0.40 0.56 0.49 0.72
L18 CK 36.49±0.34a 29.46±0.05b 35.58±0.28b 1.23±0.01a
LN 17.63±0.11b 46.05±0.52a 27.61±0.11c 0.38±0.01d
LN/CK 0.48 1.56 0.77 0.31

Fig.2

Comparison of nitrogen utilization efficiency in rapeseed germplasms with contrasting Nefficiency at different N levels"

Table 4

Comparison of dry weight utilization and N utilization in roots of rapeseed germplasms with contrasting N efficiency at different N levels"

处理
Treatment
种质编号
Germplasm
number
根系干物质利用效率
Root dry matter
utilization (cm2/mg)
根系氮利用效率
Root N utilization
(cm2/mg)
CK H6 1.24±0.43b 24.58±8.69c
L18 1.30±0.46b 43.40±15.34b
LN H6 1.56±0.55a 55.26±19.35a
L18 1.27±0.44b 27.59±9.75c
[1] 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32(2):300-302.
[2] Wiesler F, Behrens T, Horst W J . The role of nitrogen-efficient cultivars in sustainable agriculture. Science World Journal, 2001,1(2):61-69.
[3] 邹娟, 鲁剑巍, 陈防 , 等. 长江流域油菜氮磷钾肥料利用率现状研究. 作物学报, 2011,37(4):729-734.
[4] 邹娟 . 冬油菜施肥效果及土壤养分丰缺指标研究. 武汉: 华中农业大学, 2010.
[5] 张宁, 郭荣发 . 水稻氮高效种质资源筛选及其耐低氮胁迫机理研究进展. 广东农业科学, 2014,41(5):66-70.
[6] 徐晴, 许甫超, 董静 , 等. 小麦氮素利用效率的基因型差异及相关特性分析. 中国农业科学, 2017,50(14):2647-2657.
[7] 王准 . 棉花氮高效种质筛选及评价指标的研究. 北京: 中国农业科学院, 2019.
[8] 程红, 郑顺林, 马海艳 , 等. 马铃薯氮高效基因型品种筛选及指标评价. 西南农业学报, 2019,32(10):2292-2298.
[9] 屈佳伟, 高聚林, 王志刚 , 等. 不同氮效率玉米根系时空分布与氮素吸收对氮肥的响应. 植物营养与肥料学报, 2016,22(5):1212-1221.
[10] 徐晴, 许甫超, 董静 , 等. 小麦氮素利用效率的基因型差异及相关特性分析. 中国农业科学, 2017,50(14):2647-2657.
[11] 樊剑波, 张亚丽, 王东升 , 等. 水稻氮素高效吸收利用机理研究进展. 南京农业大学学报, 2008,31(2):129-134.
[12] 钟思荣, 陈仁霄, 陶瑶 . 不同烟草基因型氮素吸收效率与利用效率差异. 中国烟草科学, 2017,38(4):58-63.
[13] 陈颖, 周振翔, 周天阳 , 等. 水稻氮高效吸收利用机制及栽培调控措施. 作物杂志, 2016(6):26-32.
[14] 熊淑萍, 吴克远, 王小纯 , 等. 不同氮效率小麦品种苗期根系氮代谢及其吸收能力差异分析. 麦类作物学报, 2016,36(3):325-331.
[15] 田飞 . 油菜氮高效种质的筛选及高效机制. 武汉: 华中农业大学, 2011.
[16] Moll R H, Kamprath E J, Jackson W A . Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization. Agronomy Journal, 1982,74(3):562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[17] 徐子先 . 甘蓝型油菜氮效率评价及其差异的生理机制探究. 北京: 中国农业科学院, 2017.
[18] 韩配配, 秦璐, 李银水 , 等. 不同营养元素缺乏对甘蓝型油菜苗期生长和根系形态的影响. 中国油料作物学报, 2016,38(1):88-97.
[19] 李朝英, 郑路, 卢立华 , 等. 测定植物全氮的H2SO4-H2O2消煮法改进. 中国农学通报, 2014,30(6):159-162.
[20] 周健民, 沈仁芳 . 土壤学大辞典. 北京: 科学出版社, 2013.
[21] Xu G H, Fan X R, Miller A J . Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012,63(1):153-182.
doi: 10.1146/annurev-arplant-042811-105532
[22] 陈二影, 杨延兵, 秦岭 , 等. 谷子苗期氮高效品种筛选及相关特性分析. 中国农业科学, 2016,49(17):3287-3297.
[23] 匡艺, 李廷轩, 张锡洲 , 等. 小黑麦氮利用效率基因型差异及评价. 植物营养与肥料学报, 2011,17(4):845-851.
[24] Malamy J E . Intrinsic and environmental response pathways that regulate root system architecture. Plant,Cell and Environment, 2005,28(1):67-77.
doi: 10.1111/pce.2005.28.issue-1
[25] 李淑钰, 李传友 . 植物根系可塑性发育的研究进展与展望. 中国基础科学, 2016,18(2):14-21.
[26] 王艳, 米国华, 陈范骏 , 等. 玉米氮素吸收的基因型差异及其与根系形态的相关性. 生态学报, 2003(2):297-302.
[27] 崔文芳, 高聚林, 屈佳伟 , 等. 氮高效玉米杂交种的筛选及氮效率相关特性分析. 玉米科学, 2016,24(4):72-82.
[28] 韩永亮 . 不同氮效率油菜NO3-长距离运输和短途分配差异及其对氮效率的影响机理. 长沙: 湖南农业大学, 2015.
[29] Hajari E, Snyman S J, Watt M P . Nitrogen use efficiency of sugarcane (Saccharum spp.) varieties under in vitro conditions with varied N supply. Plant Cell Tissue & Organ Culture, 2015,122(1):21-29.
[30] 王小纯, 王晓航, 熊淑萍 , 等. 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015,48(13):2569-2579.
[31] 刘鹏, 武爱莲, 王劲松 , 等. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018,51(16):3074-3083.
[32] Hirel B, Gouis J L, Ney B . The challenge of improving nitrogen use efficiency in crop plants:towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 2007,58(9):2369-2387.
doi: 10.1093/jxb/erm097
[1] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
[2] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[3] Yu Tianyi, Zheng Yaping, Qiu Shaofen, Jiang Daqi, Wu Zhengfeng, Zheng Yongmei, Sun Xuewu, Shen Pu, Wang Caibin, Zhang Jiancheng. Effects of Calcium (Ca) Application in Acidified Soil on Ca Absorption, Utilization and Yield of Different Peanut Varieties (Lines) [J]. Crops, 2021, 37(4): 80-85.
[4] Xiong Tinghao, Zi Tao, Zhang Ai, Hu Yuqian, Peng Zhi, Song Haixing. Effects of Different Organic Fertilizer Dosages on Nutrient Utilization and Yield of Rapeseed under Chemical Fertilizer Reduction [J]. Crops, 2021, 37(3): 133-139.
[5] Yi Zhenxie, Wang Yuanyuan, Gu Zihan, Shuai Zeyu, Tu Naimei, Chen Pingping. Study on the Feasibility of Alternative Planting of Rapeseed-Middle Rice to Double Cropping Rice in Cadmium Polluted Rice Area [J]. Crops, 2021, 37(3): 65-69.
[6] Zhao Qingling, Lin Wen, Ren Aixia, Zhang Rongrong, Li Lei, Sun Min, Gao Zhiqiang. Effects of Topdressing in Spring on Population Construction and Grain Filling Process of Winter Wheat [J]. Crops, 2021, 37(3): 99-105.
[7] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
[8] Gong Songling, Cao Pei, Gao Zhenzhen, Li Chengwei, Liu Zhangyong, Zhu Bo. Effects of Cropping Patterns on Crop Yield and Resource Utilization Efficiency in Southern China [J]. Crops, 2021, 37(1): 68-73.
[9] Liu Dongjun, Song Weifu, Yang Xuefeng, Zhao Lijuan, Song Qingjie, Zhang Chunli, Xin Wenli, Xiao Zhimin. Progress of Wheat Fhb1 Gene Locating and Cloning and Its Utilization in the Resistance Breeding [J]. Crops, 2020, 36(4): 16-20.
[10] Zhang Yaowen, Li Dianrong, Hou Junli, Kong Jian, Zhang Wenxue, Dong Yuhong, Zhao Xiaoguang, Tian Jianhua, Zhang Zhongxin. Present Studies on Linolenic Acid in Rapeseed Seeds and Suggestions for Improvement [J]. Crops, 2020, 36(4): 21-29.
[11] Liu Haidong,Yu Qinglan,Wang Ruisheng,Du Dezhi. Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region [J]. Crops, 2020, 36(2): 34-40.
[12] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice [J]. Crops, 2020, 36(1): 1-8.
[13] Cui Yuefeng,Sun Guocai,Lu Tiegang,Wang Guiyan,Wang Jian,Huang Wenjia,Luan Helin. Effects of Different Straw Return Modes on Nitrogen Absorption and Utilization of Super Rice in Northern China [J]. Crops, 2019, 35(4): 164-169.
[14] Sui Yanghui,Gao Jiping,Liu Caihong,Xu Zhengjin,Wang Yanbo,Zhao Haiyan. Effects of Straw Incorporation Modes on Rice Photosynthesis, Dry Matter Accumulation and Nitrogen Uptake in Cool Region of Northeast China [J]. Crops, 2018, 34(5): 137-143.
[15] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area [J]. Crops, 2018, 34(4): 126-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!