Crops ›› 2021, Vol. 37 ›› Issue (3): 133-139.doi: 10.16035/j.issn.1001-7283.2021.03.020

Previous Articles     Next Articles

Effects of Different Organic Fertilizer Dosages on Nutrient Utilization and Yield of Rapeseed under Chemical Fertilizer Reduction

Xiong Tinghao1(), Zi Tao2, Zhang Ai1, Hu Yuqian1, Peng Zhi3, Song Haixing1()   

  1. 1School of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Hunan Biological and Electromechanical Polytechnic, Changsha 410127, Hunan, China
    3Yueyang Agricultural Sciences Institute, Yueyang 414000, Hunan, China
  • Received:2020-12-23 Revised:2021-04-20 Online:2021-06-15 Published:2021-06-22
  • Contact: Song Haixing E-mail:1092711822@qq.com;shx723@163.com

Abstract:

A field experiment was carried out to investigate the effects of the application of organic fertilizer (1125-4500kg/ha) on yield, dry matter accumulation, and nutrient accumulation of rapeseed (Xiangyou 420) under the condition of 25% reduction in chemical fertilizer, and the conventinal fertilization (without chemical fertilizer reduction and organic fertilizer) was the control. The results showed that organic fertilizer application significantly increased the accumulation of dry matter and nutrient accumulation, and the number of pods per plant, leading to higher rapeseed yield with more application of organic fertilizer under the condition of 25% chemical fertilizer reduction. However, the economic benefit only increased with the low application level of organic fertilizer (1125kg/ha). Compared with conventional fertilization (FFP) and 25% reduction of chemical fertilizer without organic fertilizer (F75%), organic fertilizer application increased the rapeseed yield by 25.2%-78.5% and 43.9%-105.1%, respectively. According to the regression equation between the amount of organic fertilizer and yield, 675kg/ha organic fertilizer application could compensate for the yield loss caused by the 25% reduction of chemical fertilizer. Compared with FFP and F75% treatments, 25% reduction of chemical fertilizer combined with organic fertilizer significantly increased dry matter, N, P and K accumulation in rapeseed. The highest economic benefit was 5789yuan/ha, which was 74yuan/ha higher than FFP treatment and 519yuan/ha higher than F75% treatment. In conclusion, the combined application of organic and inorganic fertilizers promoted nutrients accumulation and the rapeseed growth as well as rapeseed yield. The target of 25% reduction of chemical fertilizer could be achieved through the combined application of organic fertilizer, and the appropriate amount of organic fertilizer in Hunan province is about 1125kg/ha.

Key words: Rapeseed, Fertilizer reduction, Organic fertilizer, Suitable dosage

Table 1

The number of each treatment and the amount of organic fertilizer"

处理
Treatment
化肥减量
Fertilizer reduction
有机肥用量
Organic fertilizer dosage (kg/hm2)
FFP 0 0
F75% 25% 0
F75%+M1 25% 1125
F75%+M2 25% 2250
F75%+M3 25% 3375
F75%+M4 25% 4500

Fig.1

The effects of different organic fertilizer amounts on yield under the condition of chemical fertilizer reduction of 25% Different letters indicate significant difference (P < 0.05) among treatments"

Table 2

The effects of different organic fertilizer amounts on yield components under the condition of 25% chemical fertilizer reduction"

处理
Treatment
单株角果数
Pod number per plant
每角粒数
Seed number per pod
千粒重
1000-seed weight (g)
密度(万株/hm2
Density (×104 plant/hm2)
FFP 50.2±3.3c 13.20±0.21a 3.95±0.08a 54.0±6.9a
F75% 49.4±2.6c 13.67±0.34a 3.87±0.01a 48.7±1.2ab
F75%+M1 74.6±3.5b 13.57±0.20a 4.01±0.05a 49.0±2.1ab
F75%+M2 78.6±5.6b 14.60±0.90a 4.06±0.03a 51.7±2.9ab
F75%+M3 118.6±3.4a 13.20±0.67a 4.09±0.02a 47.3±2.0ab
F75%+M4 129.7±6.0a 14.03±0.54a 4.05±0.15a 44.0±2.1b

Fig.2

The effects of different organic fertilizer amounts on dry matter ccumulation under the condition of 25% chemical fertilizer reduction"

Table 3

The effects of different organic fertilizer amounts on nitrogen accumulation under the condition of 25% chemical fertilizer reduction kg/hm2"

处理Treatment 幼苗期Seedling 越冬期Overwintering 抽薹期Bolting 开花期Flowering 收获期Harvest
FFP 8.81±0.35d 38.51±2.12bc 51.7±3.5d 64.5±3.8d 78.5±3.6f
F75% 7.07±0.51d 29.95±0.98c 39.3±4.5e 52.4±0.7d 57.9±2.5e
F75%+M1 15.52±1.25c 47.79±0.53b 70.0±5.1c 77.3±6.5c 113.4±6.9d
F75%+M2 22.41±0.96b 58.45±5.01a 80.9±1.8bc 103.3±5.6b 130.4±1.7c
F75%+M3 25.01±0.50a 63.67±5.26a 90.2±2.3ab 111.9±3.7ab 157.8±0.4b
F75%+M4 26.67±0.72a 67.90±2.16a 100.8±4.5a 121.0±0.7a 177.1±5.5a

Table 4

The effects of different organic fertilizer amounts on phosphorus accumulation under the condition of 25% chemical fertilizer reduction kg/hm2"

处理Treatment 幼苗期Seedling 越冬期Overwintering 抽薹期Bolting 开花期Flowering 收获期Harvest
FFP 0.8±0.1d 2.3±0.1e 5.3±0.1e 7.3±0.1e 24.4±0.7e
F75% 0.7±0.1d 1.8±0.1e 3.6±0.1f 6.0±0.5f 18.3±0.3f
F75%+M1 1.5±0.2c 3.2±0.2d 7.5±0.3d 8.9±0.2d 37.7±1.0d
F75%+M2 2.5±0.3b 5.1±0.1c 11.3±0.5c 12.9±0.6c 42.3±2.2c
F75%+M3 2.9±0.4b 6.0±0.3b 14.9±0.4b 16.9±0.4b 49.2±0.3b
F75%+M4 3.1±0.5a 7.2±0.1a 17.7±0.6a 20.9±0.4a 53.5±0.6a

Table 5

The effects of different organic fertilizer amounts on potassium accumulation under the condition of 25% chemical fertilizer reduction kg/hm2"

处理Treatment 幼苗期Seedling 越冬期Overwintering 抽薹期Bolting 开花期Flowering 收获期Harvest
FFP 10.3±0.5c 22.2±0.6d 56.4±3.6d 80.3±3.1d 103.7±2.0e
F75% 7.7±0.3c 17.0±0.7e 38.7±2.7e 62.7±4.4e 81.8±2.6f
F75%+M1 22.8±1.1b 30.0±0.3c 74.0±4.7c 105.4±2.7c 156.2±2.9d
F75%+M2 35.3±1.4a 39.8±1.2b 90.6±2.3b 146.6±2.9b 183.5±5.9c
F75%+M3 36.2±1.4a 43.6±0.7a 100.4±3.7b 160.8±3.5a 237.6±0.7b
F75%+M4 37.4±0.2a 42.4±0.4a 111.5±3.3a 168.3±1.0a 259.3±2.6a

Table 6

The effects of different organic fertilizer amounts on fertilization benefits of rape under the condition of 25% chemical fertilizer reduction 元/hm2 yuan/hm2"

处理
Treatment
产值
Output value
肥料成本
Fertilizer cost
施肥效益
Fertilization benefit
与FFP相比
Compared with FFP
与F75%相比
Compared with F75%
FFP 7809d 2094 5715a - -
F75% 6797d 1527 5270a -445 -
F75%+M1 9780c 3991 5789a 74 519
F75%+M2 11272b 6456 4816a -899 -454
F75%+M3 11855b 8920 2935b -2780 -2335
F75%+M4 13938a 11385 2553b -3162 -2717
[1] 王汉中 . 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40(5):613-617.
[2] 王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36(3):414-421.
[3] 湖南省统计局. 湖南统计年鉴(2020). 北京: 中国统计出版社, 2020.
[4] 鲁剑巍, 任涛, 丛日环 , 等. 我国油菜施肥状况及施肥技术研究展望. 中国油料作物学报, 2018,40(5):712-720.
[5] 王寅, 鲁剑巍 . 中国冬油菜栽培方式变迁与相应的养分管理策略. 中国农业科学, 2015,48(15):2952-2966.
[6] 马静 . 生物有机肥对不同土壤生物活性和油菜产量品质的影响. 晋中: 山西农业大学, 2017:16-20.
[7] 宋以玲, 于建, 陈士更 , 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响. 水土保持学报, 2018,32(1):352-360.
[8] 田昌, 彭建伟, 宋海星 , 等. 有机肥化肥配施对冬油菜养分吸收、籽粒产量和品质的影响. 中国土壤与肥料, 2012(4):70-74.
[9] 王家宝, 孙义祥, 李虹颖 , 等. 生物有机肥用量和部分替代化肥对油菜产量的影响. 安徽农业科学, 2020,48(15):173-175.
[10] 蒋倩红, 陆志峰, 赵海燕 , 等. 长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析. 中国农业科学, 2020,53(14):2907-2918.
[11] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000.
[12] 李可, 孙彤, 孙涛 , 等. 施用鸡粪有机肥对种植小油菜土壤微生物群落结构多样性的影响. 农业环境科学学报, 2020,39(10):2316-2324.
[13] 李玉, 田宪艺, 王振林 , 等. 有机肥替代部分化肥对滨海盐碱地土壤改良和小麦产量的影响. 土壤, 2019,51(6):1173-1182.
[14] 崔宏卓, 廖世鹏, 马国生 , 等. 化肥减量后增施有机肥对直播冬油菜产量的影响. 中国农技推广, 2019,35(S1):126-128.
[15] 魏小武, 单世平, 郭照辉 , 等. 化肥减量配施生物有机肥对油菜产量的影响. 湖南农业科学, 2019(4):37-40.
[16] 王家宝, 孙义祥, 李虹颖 , 等. 生物有机肥用量和部分替代化肥对油菜产量的影响. 安徽农业科学, 2020,48(15):173-175.
[17] 宋佳 . 有机肥和氮肥用量对青海春油菜生长及硝态氮残留的影响. 杨凌: 西北农林科技大学, 2018.
[18] 刘永忠, 雷发林, 刘永春 , 等. 有机肥和化肥配施对春油菜产量养分吸收量及品质的影响. 青海农林科技, 2017(4):9-12,77.
[19] 高晓玲, 王艳, 王小波 , 等. 有机无机肥料配施对盆栽土壤肥力及油菜产量的影响. 陕西农业科学, 2005(2):42-44.
[20] Tovihoudji P G, Akponikpè P B I, Adjogboto A , et al. Combining hill-placed manure and mineral fertilizer enhances maize productivity and profitability in northern Benin. Nutrient Cycling in Agroecosystems, 2018,110(3):375-393.
doi: 10.1007/s10705-017-9872-8
[1] Zhang Jie, Chen Xin, Gao Fangfang, Ma Yajun, Liu Yanyan, Wu Cainü. Effects of Increased Application of Bio-Organic Fertilizer on Yield and Quality of Red Kidney Bean [J]. Crops, 2021, 37(3): 161-166.
[2] Qin Lu, Wang Jianqiang, Han Peipei, Li Yinshui, Gu Chiming, Hu Xiaojia, Xie Lihua, Liao Xing. Difference in Nitrogen Absorption and Transportation and Utilization of Rapeseed Germplasms with Contrasting Nitrogen Efficiency [J]. Crops, 2021, 37(3): 28-33.
[3] Yi Zhenxie, Wang Yuanyuan, Gu Zihan, Shuai Zeyu, Tu Naimei, Chen Pingping. Study on the Feasibility of Alternative Planting of Rapeseed-Middle Rice to Double Cropping Rice in Cadmium Polluted Rice Area [J]. Crops, 2021, 37(3): 65-69.
[4] Xie Jinlan, Lin Li, Li Changning, Luo Ting, Mo Zhanghong. Effects of Intercropping Mungbean Straw Returning on Sugarcane Growth and Nitrogen Metabolism under Nitrogen Fertilizer Reduction [J]. Crops, 2020, 36(4): 164-169.
[5] Yang Yongqing, Gao Fangfang, Ma Yajun, Chen Xin, Zhang Jie. Effects of Different Fertilizer Treatments on Yield, Quality and Economic Benefit of Foxtail Millet in Dry Farming Area of Shanxi Province [J]. Crops, 2020, 36(4): 195-201.
[6] Zhang Yaowen, Li Dianrong, Hou Junli, Kong Jian, Zhang Wenxue, Dong Yuhong, Zhao Xiaoguang, Tian Jianhua, Zhang Zhongxin. Present Studies on Linolenic Acid in Rapeseed Seeds and Suggestions for Improvement [J]. Crops, 2020, 36(4): 21-29.
[7] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[8] Liu Haidong,Yu Qinglan,Wang Ruisheng,Du Dezhi. Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region [J]. Crops, 2020, 36(2): 34-40.
[9] Li Guannan,Huang Lihua,Zhang Lu,Chen Jiaxing,Yang Jingmin. Effects of Organic Fertilizer and Straw Returning on Nutrition and Taste Quality of Rice in Saline-Sodic Soil of Northeast China [J]. Crops, 2019, 35(5): 82-88.
[10] Ma Fanfan,Xing Sulin,Gan Manqin,Liu Peishi,Huang Yu,Gan Xiaoyu,Ma Youhua. Effects of Organic Fertilizer Substituting for Chemical Fertilizer on Rice Yield, Soil Fertility and Nitrogen and Phosphorus Loss in Farmland [J]. Crops, 2019, 35(5): 89-96.
[11] Zhou Yun,Li Yongmei,Fan Maopan,Wang Zilin,Xu Zhi,Zhang Dan,Zhao Jixia. Effects of Nitrogen in Organic Manure Replacing Chemical Nitrogenous Fertilizer on Aggregates of Red Soil, Maize Yield and Quality [J]. Crops, 2019, 35(4): 125-132.
[12] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[13] Yiran Ye, ,Bencai Sha,Wenxiang Wang,Hongda Ye,Shixian Geng,Jingjin Cheng,Meirong Hai. Effects of Different Fertilizers on Photosynthetic Characteristics of Winter Potato [J]. Crops, 2018, 34(3): 135-140.
[14] Jianghui Cui,Fuzhu Cui,Jianfu Xue,Jianping Hao,Tianqing Du,Longxiang Sun. Effects of Fertilizer Reduction on Distribution and Stability of Soil Aggregates Based on Wheat-Sorghum System [J]. Crops, 2018, 34(1): 126-132.
[15] Haoyu Lu,Hao Wen,Zhenxie Yi,Tiejun Zhou. Effects of Nitrogen Application Rate and Ratio of Inorganic and Organic Fertilizers on Yield Formation and Rice Quality of Purple Rice [J]. Crops, 2017, 33(6): 147-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!