Crops ›› 2020, Vol. 36 ›› Issue (1): 1-8.doi: 10.16035/j.issn.1001-7283.2020.01.001

    Next Articles

Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice

Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng()   

  1. Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
  • Received:2019-06-20 Revised:2019-10-14 Online:2020-02-15 Published:2020-02-23
  • Contact: Xiufeng Wang E-mail:xiufengwang66@sohu.com

Abstract:

The cadmium (Cd) pollution in rice grains is a widespread problem that needs to be solved urgently. Quantitative trait locus (QTL) controlling Cd accumulation and important functional genes regulating Cd accumulation and distribution in rice have been extensively studied and reported. This paper mainly reviews and summarizes the physiological and molecular mechanisms of Cd uptake, transport, accumulation and exclusion in rice, in addition, we also summarized some of the current experimental results made by scholars in cultivating "low Cd rice", discussed existing problems and perspectives to reduce Cd in rice grains.

Key words: Rice (Oryza sativa L.), Cadmium, Absorption and transportation, Accumulation and exclusion, Genetic engineering

[1] 杨云帆, 夏卫生, 王小芳 . 镉污染农田的不同修复技术现状及展望. 中国农业信息,2017(23):49-51.
[2] Phuc H D, Kido T, Oanh N T P ,et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan. Journal of Applied Toxicology, 2017,37(9):1046-1052.
[3] Akesson A, Barregard L, Bergdahl I A , et al. Non-renal effects and the risk assessment of environmental cadmium exposure. Environmental Health Perspectives, 2014,122(5):431-438.
[4] Sharma A K . Evaluation of certain food additives and contaminants:Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. FAO/WHO, 2012.
[5] 石一珺, 徐颖菲, 倪中应 , 等. 杭州市主要农作物对镉的富集差异及其影响因素. 浙江农业科学, 2019,60(7):1230-1233.
[6] Chen H, Tang Z, Wang P , et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 2018,238:482-490.
[7] Li H, Luo N, Li Y W , et al. Cadmium in rice:transport mechanisms,influencing factors,and minimizing measures. Environmental Pollution, 2017,224:622-630.
[8] Nishizono H, Ichikawa H, Suziki S , et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil, 1987,101(1):15-20.
[9] Xiong J, An L Y, Lu H , et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 2009,230(4):755-765.
[10] 田连福 . 植物吸收、转运和积累镉的机理研究进展. 生命科学研究, 2015,19(2):176-184.
[11] 周志波, 易亚科, 陈光辉 . 水稻Cd吸收、转运机理研究进展. 作物杂志,2017(1):14-19.
[12] 张参俊, 尹洁, 张长波 , 等. 非选择性阳离子通道对水稻幼苗镉吸收转运特性的影响. 农业环境科学学报, 2015,34(6):1028-1033.
[13] Tian S K, Lu L L, Zhang J , et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere, 2011,84(1):63-69.
[14] Guo J B, Xu W Z, Ma M . The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 2012,199(1):309-313.
[15] 杨菲, 唐明凤, 朱玉兴 . 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015,30(3):2-8.
[16] Uraguchi S, Mori S, Kuramata M , et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009,60(9):2677-2688.
[17] Ishikawa S, Suzui N, Ito-Tanabata S , et al. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer . BMC Plant Biology, 2011,11(1):172.
[18] Fujimaki S, Suzui N, Ishioka N S , et al. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption,transport,and accumulation of cadmium in an intact rice plant. Plant Physiology, 2010,152(4):1796-1806.
[19] Clemens S . Plant science:the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013,18(2):92-99.
[20] 朱智伟, 陈铭学, 牟仁祥 , 等. 水稻镉代谢与控制研究进展. 中国农业科学, 2014,47(18):3633-3640.
[21] Rodda M S, Li G, Reid R J . The timing of grain Cd accumulation in rice plants:the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant and Soil, 2011,347(1/2):105-114.
[22] Mariyo K, Satoru I, Kazumi I , et al. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2010,56(6):839-847.
[23] Ishimaru Y, Suzuki M, Tsukamoto T , et al. Rice plants take up iron as an Fe 3+-phytosiderophore and as Fe 2+ . Plant Journal, 2006,45(3):335-346.
[24] Nakanishi H, Ogawa I, Ishimaru Y , et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 2006,52(4):464-469.
[25] Lee S, An G . Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell and Environment, 2010,32(4):408-416.
[26] Sasaki A, Yamaji N, Yokosho K , et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 2012,24(5):2155-2167.
[27] Ueno D, Yamaji N, Kono I , et al. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(38):16500-16505.
[28] Miyadate H, Adachi S, Hiraizumi A , et al. OsHMA3,a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 2011,189(1):190-199.
[29] Ueno D, Koyama E, Yamaji N , et al. Physiological,genetic,and molecular characterization of a high-Cd-accumulating rice cultivar,Jarjan. Journal of Experimental Botany, 2010,62(7):2265-2272.
[30] Takahashi R, Ishimaru Y, Nakanishi H , et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling and Behavior, 2011,6(11):1813-1816.
[31] Sasaki A, Yamaji N, Ma J F . Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 2014,65(20):6013-6021.
[32] Ishimaru Y, Takahashi R, Bashir K , et al. Characterizing the role of rice NRAMP5 in manganese,iron and cadmium transport. Scientific Reports, 2012,2:286.
[33] Ryuichi T, Yasuhiro I, Hugo S , et al. From laboratory to field:OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE, 2014,9(6):e98816.
[34] Yang M, Zhang Y Y, Zhang L J , et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014,65(17):4849.
[35] Yang C, Zhang Y, Huang C . Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. Journal of Integrative Agriculture, 2018,18(3):688-697.
[36] Ishikawa S, Abe T, Kuramata M , et al. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. Journal of Experimental Botany, 2010,61(3):923-934.
[37] Tiwari M, Sharma D, Dwivedi S , et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP,OsNRAMP1,in arsenic transport and tolerance. Plant, Cell and Environment, 2014,37(1):140-152.
[38] Takahashi R, Ishimaru Y, Senoura T , et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011,62(14):4843-4850.
[39] Satoh-Nagasawa N, Mori M, Nakazawa N , et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant and Cell Physiology, 2012,53(1):213-224.
[40] Takahashi R, Ishimaru Y, Shimo H , et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell and Environment, 2012,35:1948-1957.
[41] Yamaji N, Xia J, Mitani-Ueno N , et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013,162(2):927-939.
[42] Uraguchi S, Kamiya T, Sakamoto T , et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(52):20959-20964.
[43] Lee S, Kim Y Y, Lee Y , et al. Rice P1B-type heavy-metal ATPase,OsHMA9,is a metal efflux protein. Plant Physiololgy, 2007,145(3):831-842.
[44] Kuramata M, Masuya S, Takahashi Y , et al. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant and Cell Physiology, 2009,50(1):106-117.
[45] Oda K, Otani M, Uraguchi S , et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Journal of the Agricultural Chemical Society of Japan, 2011,75(6):1211-1213.
[46] Shimo H, Ishimaru Y, An G , et al. Low cadmium (LCD),a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011,62(15):5727-5734.
[47] Wang F, Wang M, Liu Z , et al. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiology and Biochemistry, 2015,96:261-269.
[48] Wang C, Guo W, Cai X , et al. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes. New Biotechnology, 2018,48:29-34.
[49] 殷小林, 孙志忠, 袁定阳 , 等. 水稻体内镉离子代谢机制研究进展. 分子植物育种, 2018,16(3):972-978.
[50] Yuan L, Yang S, Liu B , et al. Molecular characterization of a ricemetal tolerance protein,OsMTP1. Plant Cell Reports, 2012,31(1):67-79.
[51] Lan H X, Wang Z F, Wang Q H , et al. Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Molecular Biology Reports, 2013,40(2):1201-1210.
[52] Menguer P K, Farthing E, Peaston K A , et al. Functional analysis of the rice vacuolar zinc transporter OsMTP1. Journal of Experimental Botany, 2013,64(10):2871-2883.
[53] Das N, Bhattacharya S, Maiti M K . Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiology and Biochemistry, 2016,105:297-309.
[54] Ding Y, Chen Z, Zhu C . Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of Experimental Botany, 2011,62(10):3563-3573.
[55] Ding Y F, Ye Y Y, Jiang Z H , et al. MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Frontiers in Plant Science, 2016,7:235.
[56] Ding Y F, Guo S H, Wang Y , et al. MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiology, 2018,177:1691-1703.
[57] 罗惠莉, 王宇霖, 周思 , 等. 生物炭基调理剂对水稻镉吸收的影响. 环境工程学报,2018(4):1190-1197.
[58] Yin Y, Qun Z Y, Hua L C , et al. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils. PLoS ONE, 2015,10(4):e0124022.
[59] Hu P, Ouyang Y, Wu L , et al. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences, 2015,27:225-231.
[60] Yu L L, Zhu J Y, Huang Q Q , et al. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicology and Environmental Safety, 2014,108:287-293.
[61] 彭鸥, 刘玉玲, 铁柏清 , 等. 施硅对镉胁迫下水稻镉吸收和转运的调控效应. 生态学杂志, 2019,38(4):1049-1056.
[62] 何冰, 陈小勤, 辛子兵 , 等. 不同生长调节物质对水稻生长及镉积累的影响. 生态学报, 2016,36(21):6863-6871.
[63] He S Y, He Z L, Yang X E , et al. Soil biogeochemistry,plant physiology,and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 2015,134:135-225.
[64] Dixit R, Wasiullah, Malaviya, D ,et al. Bioremediation of heavy metals from soil and aquatic environment:an overview of principles and criteria of fundamental processes. Sustainability, 2015,7(2):2189-2212.
[65] Ishikawa S, Ishimaru Y, Igura M , et al. Ion-beam irradiation,gene identification,and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences, 2012,109(47):19166-19171.
[66] Luo J S, Huang J, Zeng D L , et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018,9(1):645.
[67] 黄新元, 赵方杰 . 植物分子遗传学在挖掘作物重金属积累相关基因中的作用. 农业环境科学学报, 2018,37(7):1396-1401.
[68] Liu J G, Zhu Q S, Zhang Z J , et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal of the Science of Food and Agriculture, 2010,85(1):147-153.
[1] Jiayan Sheng,Weiyang Zhang,Zhiqin Wang,Jianchang Yang. Mechanism and Regulation in Spikelet Degeneration of Rice [J]. Crops, 2019, 35(2): 20-27.
[2] Jing Yan,Wenxiu Ji,Xianji Shi,Shimiao Zhu,Hulin Li. Effects of Cadmium Stress on Seed Germination and Seedling Growth of Tobacco (Nicotiana tabacum) [J]. Crops, 2019, 35(2): 142-149.
[3] Jiao Yuzi,Guo Junmei,Yang Junxing,Li Houen,Xu Tiebing,Ye Yong,Zhou Xiaoyong. Field Study on Variety Difference of Cadmium Accumulation in Sunflower (Helianthus annuus L.) [J]. Crops, 2018, 34(6): 89-95.
[4] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[5] Yuqiao Cao,Qingkai Nie,Yun Gao,Zicheng Xu,Wuxing Huang. The Studies on Cadmium and Its Chelate Related Transporters in Plants [J]. Crops, 2018, 34(3): 15-24.
[6] Haiyun Rui,Zhenguo Shen,Fenqin Zhang. Effects of Soil Cadmium Contamination on Growth, Cadmium Accumulation and Nutrient Uptake of Vicia sativa L. [J]. Crops, 2017, 33(6): 104-108.
[7] Haiyun Rui,Xingxing Zhang,Zhenguo Shen,Fenqin Zhang. Water Deficit Stress and Osmotic Substances Accumulation of Vicia sativa L. under Cadmium Stress [J]. Crops, 2017, 33(3): 69-74.
[8] Junzhi Duan,Ying Li,Mingzhong Zhao,Qingzhou Li,Li Zhang,Xiaochun Wei,Yinling Ren. Progress on Application of NAC Transcription Factors in Plant Abiotic Tolerance Genetic Engineering [J]. Crops, 2017, 33(2): 14-22.
[9] Zhibo Zhou,Yake Yi,Guanghui Chen. Advances in Cd Uptake and Transport in Rice [J]. Crops, 2017, 33(1): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Ruiqi Ma,Zhen Qi,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Jinfeng Feng,Min Sun,Guangcai Zhao. Regulation Effects of Growth Regulators on Plant Characters, Yield and Quality of Winter Wheat[J]. Crops, 2018, 34(1): 133 -140 .
[5] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[6] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[7] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[8] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[9] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[10] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .