[1] |
杨云帆, 夏卫生, 王小芳 . 镉污染农田的不同修复技术现状及展望. 中国农业信息,2017(23):49-51.
|
[2] |
Phuc H D, Kido T, Oanh N T P ,et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan. Journal of Applied Toxicology, 2017,37(9):1046-1052.
|
[3] |
Akesson A, Barregard L, Bergdahl I A , et al. Non-renal effects and the risk assessment of environmental cadmium exposure. Environmental Health Perspectives, 2014,122(5):431-438.
|
[4] |
Sharma A K . Evaluation of certain food additives and contaminants:Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. FAO/WHO, 2012.
|
[5] |
石一珺, 徐颖菲, 倪中应 , 等. 杭州市主要农作物对镉的富集差异及其影响因素. 浙江农业科学, 2019,60(7):1230-1233.
|
[6] |
Chen H, Tang Z, Wang P , et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 2018,238:482-490.
|
[7] |
Li H, Luo N, Li Y W , et al. Cadmium in rice:transport mechanisms,influencing factors,and minimizing measures. Environmental Pollution, 2017,224:622-630.
|
[8] |
Nishizono H, Ichikawa H, Suziki S , et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil, 1987,101(1):15-20.
|
[9] |
Xiong J, An L Y, Lu H , et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta, 2009,230(4):755-765.
|
[10] |
田连福 . 植物吸收、转运和积累镉的机理研究进展. 生命科学研究, 2015,19(2):176-184.
|
[11] |
周志波, 易亚科, 陈光辉 . 水稻Cd吸收、转运机理研究进展. 作物杂志,2017(1):14-19.
|
[12] |
张参俊, 尹洁, 张长波 , 等. 非选择性阳离子通道对水稻幼苗镉吸收转运特性的影响. 农业环境科学学报, 2015,34(6):1028-1033.
|
[13] |
Tian S K, Lu L L, Zhang J , et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere, 2011,84(1):63-69.
|
[14] |
Guo J B, Xu W Z, Ma M . The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 2012,199(1):309-313.
|
[15] |
杨菲, 唐明凤, 朱玉兴 . 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015,30(3):2-8.
|
[16] |
Uraguchi S, Mori S, Kuramata M , et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009,60(9):2677-2688.
|
[17] |
Ishikawa S, Suzui N, Ito-Tanabata S , et al. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107Cd tracer . BMC Plant Biology, 2011,11(1):172.
|
[18] |
Fujimaki S, Suzui N, Ishioka N S , et al. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption,transport,and accumulation of cadmium in an intact rice plant. Plant Physiology, 2010,152(4):1796-1806.
|
[19] |
Clemens S . Plant science:the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013,18(2):92-99.
|
[20] |
朱智伟, 陈铭学, 牟仁祥 , 等. 水稻镉代谢与控制研究进展. 中国农业科学, 2014,47(18):3633-3640.
|
[21] |
Rodda M S, Li G, Reid R J . The timing of grain Cd accumulation in rice plants:the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant and Soil, 2011,347(1/2):105-114.
|
[22] |
Mariyo K, Satoru I, Kazumi I , et al. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2010,56(6):839-847.
|
[23] |
Ishimaru Y, Suzuki M, Tsukamoto T , et al. Rice plants take up iron as an Fe 3+-phytosiderophore and as Fe 2+ . Plant Journal, 2006,45(3):335-346.
|
[24] |
Nakanishi H, Ogawa I, Ishimaru Y , et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 2006,52(4):464-469.
|
[25] |
Lee S, An G . Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell and Environment, 2010,32(4):408-416.
|
[26] |
Sasaki A, Yamaji N, Yokosho K , et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 2012,24(5):2155-2167.
|
[27] |
Ueno D, Yamaji N, Kono I , et al. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(38):16500-16505.
|
[28] |
Miyadate H, Adachi S, Hiraizumi A , et al. OsHMA3,a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 2011,189(1):190-199.
|
[29] |
Ueno D, Koyama E, Yamaji N , et al. Physiological,genetic,and molecular characterization of a high-Cd-accumulating rice cultivar,Jarjan. Journal of Experimental Botany, 2010,62(7):2265-2272.
|
[30] |
Takahashi R, Ishimaru Y, Nakanishi H , et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signaling and Behavior, 2011,6(11):1813-1816.
|
[31] |
Sasaki A, Yamaji N, Ma J F . Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Journal of Experimental Botany, 2014,65(20):6013-6021.
|
[32] |
Ishimaru Y, Takahashi R, Bashir K , et al. Characterizing the role of rice NRAMP5 in manganese,iron and cadmium transport. Scientific Reports, 2012,2:286.
|
[33] |
Ryuichi T, Yasuhiro I, Hugo S , et al. From laboratory to field:OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields. PLoS ONE, 2014,9(6):e98816.
|
[34] |
Yang M, Zhang Y Y, Zhang L J , et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. Journal of Experimental Botany, 2014,65(17):4849.
|
[35] |
Yang C, Zhang Y, Huang C . Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. Journal of Integrative Agriculture, 2018,18(3):688-697.
|
[36] |
Ishikawa S, Abe T, Kuramata M , et al. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. Journal of Experimental Botany, 2010,61(3):923-934.
|
[37] |
Tiwari M, Sharma D, Dwivedi S , et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP,OsNRAMP1,in arsenic transport and tolerance. Plant, Cell and Environment, 2014,37(1):140-152.
|
[38] |
Takahashi R, Ishimaru Y, Senoura T , et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experimental Botany, 2011,62(14):4843-4850.
|
[39] |
Satoh-Nagasawa N, Mori M, Nakazawa N , et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant and Cell Physiology, 2012,53(1):213-224.
|
[40] |
Takahashi R, Ishimaru Y, Shimo H , et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell and Environment, 2012,35:1948-1957.
|
[41] |
Yamaji N, Xia J, Mitani-Ueno N , et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013,162(2):927-939.
|
[42] |
Uraguchi S, Kamiya T, Sakamoto T , et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(52):20959-20964.
|
[43] |
Lee S, Kim Y Y, Lee Y , et al. Rice P1B-type heavy-metal ATPase,OsHMA9,is a metal efflux protein. Plant Physiololgy, 2007,145(3):831-842.
|
[44] |
Kuramata M, Masuya S, Takahashi Y , et al. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant and Cell Physiology, 2009,50(1):106-117.
|
[45] |
Oda K, Otani M, Uraguchi S , et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Journal of the Agricultural Chemical Society of Japan, 2011,75(6):1211-1213.
|
[46] |
Shimo H, Ishimaru Y, An G , et al. Low cadmium (LCD),a novel gene related to cadmium tolerance and accumulation in rice. Journal of Experimental Botany, 2011,62(15):5727-5734.
|
[47] |
Wang F, Wang M, Liu Z , et al. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiology and Biochemistry, 2015,96:261-269.
|
[48] |
Wang C, Guo W, Cai X , et al. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes. New Biotechnology, 2018,48:29-34.
|
[49] |
殷小林, 孙志忠, 袁定阳 , 等. 水稻体内镉离子代谢机制研究进展. 分子植物育种, 2018,16(3):972-978.
|
[50] |
Yuan L, Yang S, Liu B , et al. Molecular characterization of a ricemetal tolerance protein,OsMTP1. Plant Cell Reports, 2012,31(1):67-79.
|
[51] |
Lan H X, Wang Z F, Wang Q H , et al. Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Molecular Biology Reports, 2013,40(2):1201-1210.
|
[52] |
Menguer P K, Farthing E, Peaston K A , et al. Functional analysis of the rice vacuolar zinc transporter OsMTP1. Journal of Experimental Botany, 2013,64(10):2871-2883.
|
[53] |
Das N, Bhattacharya S, Maiti M K . Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiology and Biochemistry, 2016,105:297-309.
|
[54] |
Ding Y, Chen Z, Zhu C . Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). Journal of Experimental Botany, 2011,62(10):3563-3573.
|
[55] |
Ding Y F, Ye Y Y, Jiang Z H , et al. MicroRNA390 is involved in cadmium tolerance and accumulation in rice. Frontiers in Plant Science, 2016,7:235.
|
[56] |
Ding Y F, Guo S H, Wang Y , et al. MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiology, 2018,177:1691-1703.
|
[57] |
罗惠莉, 王宇霖, 周思 , 等. 生物炭基调理剂对水稻镉吸收的影响. 环境工程学报,2018(4):1190-1197.
|
[58] |
Yin Y, Qun Z Y, Hua L C , et al. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils. PLoS ONE, 2015,10(4):e0124022.
|
[59] |
Hu P, Ouyang Y, Wu L , et al. Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences, 2015,27:225-231.
|
[60] |
Yu L L, Zhu J Y, Huang Q Q , et al. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicology and Environmental Safety, 2014,108:287-293.
|
[61] |
彭鸥, 刘玉玲, 铁柏清 , 等. 施硅对镉胁迫下水稻镉吸收和转运的调控效应. 生态学杂志, 2019,38(4):1049-1056.
|
[62] |
何冰, 陈小勤, 辛子兵 , 等. 不同生长调节物质对水稻生长及镉积累的影响. 生态学报, 2016,36(21):6863-6871.
|
[63] |
He S Y, He Z L, Yang X E , et al. Soil biogeochemistry,plant physiology,and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 2015,134:135-225.
|
[64] |
Dixit R, Wasiullah, Malaviya, D ,et al. Bioremediation of heavy metals from soil and aquatic environment:an overview of principles and criteria of fundamental processes. Sustainability, 2015,7(2):2189-2212.
|
[65] |
Ishikawa S, Ishimaru Y, Igura M , et al. Ion-beam irradiation,gene identification,and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences, 2012,109(47):19166-19171.
|
[66] |
Luo J S, Huang J, Zeng D L , et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018,9(1):645.
|
[67] |
黄新元, 赵方杰 . 植物分子遗传学在挖掘作物重金属积累相关基因中的作用. 农业环境科学学报, 2018,37(7):1396-1401.
|
[68] |
Liu J G, Zhu Q S, Zhang Z J , et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal of the Science of Food and Agriculture, 2010,85(1):147-153.
|