Crops ›› 2018, Vol. 34 ›› Issue (1): 126-132.doi: 10.16035/j.issn.1001-7283.2018.01.020

Previous Articles     Next Articles

Effects of Fertilizer Reduction on Distribution and Stability of Soil Aggregates Based on Wheat-Sorghum System

Cui Jianghui,Cui Fuzhu,Xue Jianfu,Hao Jianping,Du Tianqing,Sun Longxiang   

  1. College of Agriculture,Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2017-10-20 Revised:2017-12-27 Online:2018-02-20 Published:2018-08-24

Abstract:

The current amount of fertilizer application in China are far more than global average level, which causes serious soil degradation problem. Thus controlling the amount of fertilizer is imminent. In this experiment, the soil aggregates distribution and stability were studied by fertilizer reduction. Four treatments including conventional dosage (CK), 75% of conventional dosage (UA75%), 50% of conventional dosage (UA50%), and 25% of conventional dosage (UA25%)were set up in the experiment. The results showed that the effect of fertilizer reduction on the mechanical stability aggregates distribution was not obviously different, but the number of water stability large aggregates was significantly increased based on analysis the distribution and stability of soil aggregates. Fertilizer reduction had no significant effects on the mean weight diameter (MWD), geometric mean diameter (GMD) and fractal dimension (D) values of the mechanical stability aggregates. UA25% and UA50% increased the MWD and GMD values of the water stability aggregates, decreased the D value, declined the percentage of aggregate destruction (PAD), and improved the water stable aggregates stability rate (WSAR) value. Fertilizer reduction significantly reduced winter wheat yield, while UA50% and UA75% treatments had no significant effects on summer sorghum production. In summary, UA50% treatment can improve the soil aggregates stability on two seasons crops and ensure the yield of summer sorghum, however, fertilizer reduction significantly reduced winter wheat yield.

Key words: Fertilizer reduction, Wheat-sorghum, Soil aggregates, Distribution, Stability

Table 1

Soil basic physical and chemical properties"

土层(cm)
Soil depth
pH 碱解氮(mg/kg)
Available N
速效钾(mg/kg)
Available K
速效磷(mg/kg)
Available P
全氮(g/kg)
Total N
全钾(g/kg)
Total K
全磷(g/kg)
Total P
0~10 7.95 66.25 229.99 9.27 1.56 16.87 0.89
10~20 7.99 28.25 175.88 1.18 1.31 16.87 0.81
20~30 8.16 22.91 130.29 0.55 1.04 29.76 1.84

Table 2

Distribution of soil mechanical stability aggregates under different chemical fertilizer application rates %"

土层(cm)
Soil depth
处理
Treatment
d≥10mm 10mm>d≥7mm 7mm>d≥5mm 5mm>d≥3mm 3mm>d≥2mm 2mm>d≥1mm 1mm>d≥0.5mm 0.5mm>d≥0.25mm d<0.25mm
0~10 UA25% 17.63±1.63a 7.88±1.75b 7.07±0.89a 9.20±0.73ab 9.49±0.48a 17.20±0.54ab 15.76±1.63a 8.20±1.21a 7.56±1.41a
UA50% 16.66±0.94a 16.74±4.30a 9.19±1.23a 10.32±0.83a 9.83±0.41a 15.13±1.09b 11.95±1.87a 5.49±1.42a 4.69±1.09b
UA75% 13.53±0.98b 10.95±0.58ab 7.52±0.31a 9.83±0.38ab 10.44±0.19a 17.55±0.15a 15.15±0.54a 8.18±0.50a 6.86±0.19a
CK 14.38±1.19b 14.55±1.30ab 8.09±0.43a 8.09±0.45b 9.18±0.46a 16.32±0.48ab 14.77±1.01a 8.43±1.01a 6.19±0.68a
10~20 UA25% 17.31±0.51a 13.21±0.61a 7.69±0.91ab 9.41±0.40a 9.59±0.16a 16.21±0.60a 13.49±0.92a 7.59±0.94a 5.48±0.89a
UA50% 13.71±0.46b 16.24±2.30a 8.75±0.62ab 10.41±0.72a 10.85±0.57a 16.55±0.87a 12.26±0.83a 6.50±0.73a 4.74±0.36a
UA75% 16.14±0.66a 15.79±1.23a 6.93±0.69b 9.65±0.49a 10.26±0.70a 16.58±0.85a 13.88±0.77a 6.37±0.61a 4.40±0.54a
CK 14.85±0.20ab 15.12±1.04a 9.50±0.69a 9.36±0.41a 9.43±0.75a 15.29±0.70a 13.08±0.38a 7.59±1.01a 5.77±1.52a
20~30 UA25% 18.17±0.18a 12.23±1.81a 6.36±0.21a 7.99±0.24a 8.59±0.30b 15.48±0.06a 15.50±0.73a 9.33±0.91a 6.35±0.98ab
UA50% 14.94±0.70b 14.40±1.18a 8.46±0.98a 9.02±0.36a 8.81±0.26ab 15.36±0.82a 14.03±1.30a 8.47±1.12a 6.51±0.65ab
UA75% 13.28±1.25b 13.29±0.86a 8.05±0.81a 8.38±0.61a 9.74±0.31a 17.43±1.35a 16.63±0.75a 8.31±0.72a 4.89±0.63b
CK 15.01±0.32b 13.58±0.97a 8.62±0.63a 8.72±0.86a 9.08±0.38ab 15.21±0.13a 13.99±0.65a 8.41±0.46a 7.38±0.52a

Table 3

Distribution of water-stable aggregates under different chemical fertilizer application rates %"

土层(cm)
Soil depth
处理
Treatment
d≥5mm 5mm>
d≥3mm
3mm>
d≥2mm
2mm>
d≥1mm
1mm>d≥0.5mm 0.5mm>d≥0.25mm d<0.25mm
0~10 UA25% 0.02±0.01b 0.13±0.07a 0.31±0.02a 0.28±0.01ab 3.74±0.57a 13.38±2.40a 82.90±2.30c
UA50% 0.18±0.07a 0.03±0.01a 0.20±0.01a 0.36±0.02ab 2.57±0.15ab 9.50±0.55b 87.15±0.58b
UA75% 0.06±0.01ab 0.06±0.01a 0.22±0.02a 0.51±0.02a 1.93±0.31b 6.97±0.76c 90.26±1.23a
CK 0.07±0.01ab 0.22±0.02a 0.18±0.03a 0.12±0.01b 2.45±0.17ab 8.83±0.76bc 88.14±0.78ab
10~20 UA25% 0.01±0.00c 0.01±0.00c 0.12±0.01b 0.20±0.02b 3.41±0.69b 10.91±1.60a 85.35±2.31ab
UA50% 0.83±0.06a 0.63±0.04a 0.69±0.02a 0.90±0.03a 8.71±0.30a 13.01±1.82a 75.23±1.80b
UA75% 0.14±0.02b 0.74±0.04a 0.44±0.02ab 0.58±0.03ab 2.67±0.38b 8.03±1.69a 87.39±4.67ab
CK 0.11±0.01b 0.17±0.03b 0.30±0.02ab 0.35±0.01b 1.92±0.42b 7.95±1.40a 89.21±3.03a
20~30 UA25% 0.00±0.00b 0.00±0.00a 0.07±0.01a 0.28±0.02ab 1.19±0.05a 7.05±0.52a 91.41±0.49b
UA50% 0.18±0.01a 0.02±0.00a 0.25±0.02a 0.13±0.07b 0.85±0.03a 4.81±0.52b 93.77±1.26a
UA75% 0.23±0.02a 0.09±0.01a 0.14±0.01a 0.06±0.01bc 1.22±0.06a 4.93±0.57b 93.33±0.78ab
CK 0.01±0.00b 0.00±0.00a 0.13±0.04a 0.40±0.02a 1.14±0.02a 6.85±0.23a 91.46±1.48b

Table 4

Effects of different chemical fertilizer application rates on soil mean weight diameter, geometric mean diameter and fractal dimension of different soil depths"

指标
Index
处理
Treatment
机械稳定性团聚体Mechanical stability aggregates 水稳性团聚体Water-stable aggregates
0~10cm 10~20cm 20~30cm 0~10cm 10~20cm 20~30cm
MWD UA25% 3.88±0.46ab 4.31±0.28a 4.16±0.29a 0.20±0.01a 0.18±0.01b 0.16±0.00a
UA50% 4.65±0.64a 4.33±0.28a 4.18±0.28a 0.19±0.01ab 0.33±0.02a 0.16±0.01a
UA75% 3.81±0.07b 4.40±0.10a 3.94±0.10a 0.17±0.01bc 0.22±0.02ab 0.17±0.01a
CK 4.11±0.30ab 4.32±0.24a 4.12±0.24a 0.18±0.01b 0.18±0.02b 0.16±0.01a
GMD UA25% 1.36±0.02b 1.46±0.08a 1.40±0.08a 0.45±0.00a 0.44±0.01ab 0.42±0.00a
UA50% 1.56±0.02a 1.50±0.07a 1.43±0.09a 0.44±0.00b 0.48±0.04a 0.42±0.00a
UA75% 1.37±0.01ab 1.50±0.03a 1.40±0.04a 0.43±0.00c 0.44±0.01ab 0.42±0.00a
CK 1.41±0.07ab 1.47±0.09a 1.40±0.04a 0.43±0.00bc 0.43±0.01b 0.43±0.00a
D UA25% 2.29±0.15a 2.21±0.05a 2.27±0.05a 2.89±0.01c 2.91±0.02ab 2.95±0.00b
UA50% 2.13±0.19a 2.16±0.04a 2.27±0.07a 2.92±0.00b 2.83±0.09b 2.96±0.01a
UA75% 2.26±0.07a 2.14±0.09a 2.18±0.10a 2.94±0.01a 2.91±0.03ab 2.96±0.01ab
CK 2.25±0.09a 2.21±0.06a 2.30±0.06a 2.93±0.00ab 2.93±0.02a 2.95±0.01b

Table 5

Effects of different chemical fertilizer application rate on percentage of aggregate destruction, water-stable aggregate stability rate and yield"

处理
Treatment
团聚体破坏率(%)
Percentage of aggregates destruction
团聚体稳定率(%)
Water-stable aggregates stability rate
产量(kg/hm2)
Yield
0~10cm 10~20cm 20~30cm 0~10cm 10~20cm 20~30cm 小麦Wheat 高粱Sorghum
UA25% 80.79±2.01c 84.5±1.96ab 90.82±0.56b 4.45±0.42a 3.60±0.46b 2.12±0.12a 7 925.03±31.48c 5 567.33±14.51b
UA50% 86.55±0.44b 74.03±1.05b 93.32±1.14a 3.20±0.14b 4.50±0.35a 1.51±0.26b 8 568.28±19.06b 6 086.33±32.36a
UA75% 89.54±1.09a 86.80±2.01ab 92.99±0.62ab 2.36±0.26c 2.68±0.27c 1.67±0.16ab 8 783.02±22.88b 6 104.61±52.93a
CK 87.36±0.77ab 88.48±2.93a 90.78±1.36b 2.95±0.20b 2.36±0.27c 2.11±0.31a 9 452.63±65.75a 6 118.81±41.64a
[1] Mikha M M, Rice C W . Tillage and manure effect on soil and aggregate associated carbon and nitrogen. Soil Science Society of America Journal, 2004,68(3):809-816.
doi: 10.2136/sssaj2004.0809
[2] Tisdall J M, Oades J M . Organic matter and water-stable aggregates in soils. Journal of Soil Science, 1982,33(2):141-163.
doi: 10.1111/j.1365-2389.1982.tb01755.x
[3] Angers D A . Water-stable aggregation of Québec silty clay soils:Some factors controlling its dynamics. Soil & Tillage Research, 1998,47(1/2):91-96.
doi: 10.1016/S0167-1987(98)00077-4
[4] Rattan L . Physical management of soils of the tropics:Priorities for the 21 century. Soil Science, 2000,165:191-207.
doi: 10.1097/00010694-200003000-00002
[5] 李阳兵, 谢德体 . 不同土地利用方式对岩溶山地土壤团粒结构的影响. 水土保持学报, 2001,15(4):122-125.
[6] Six J, Elliot E T, Paustian K . Soil structure and soil organic matter. II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 2000,64:1042-1049.
doi: 10.2136/sssaj2000.6431042x
[7] 安婷婷, 汪景宽, 李双异 , 等. 施用有机肥对黑土团聚体有机碳的影响. 应用生态学报, 2008,19(2):369-373.
[8] 杜立宇, 李天来, 梁成华 , 等. 长期不同施肥处理对设施土壤团聚体组成及其稳定性的影响. 水土保持通报, 2012,32(1):38-41,76.
[9] 韩玉竹, 黄建国, 赵敬坤 , 等. 长期定位施肥对潮土团聚体结构及其磷组分的影响. 水土保持学报, 2011,25(6):105-109.
[10] 刘京, 常庆瑞, 李岗 . 连续不同施肥对土壤团聚性影响的研究. 水土保持通报, 2000,8(4):24-26.
[11] 苗淑杰, 周连仁, 乔云发 , 等. 长期施肥对黑土有机碳矿化和团聚体碳分布的影响. 土壤学报, 2009,46(11):1068-1075.
doi: 10.3321/j.issn:0564-3929.2009.06.014
[12] 王晓娟, 贾志宽, 梁连友 , 等. 旱地施有机肥对土壤有机质和水稳性团聚体的影响. 应用生态学报, 2012,23(1):159-165.
[13] 朱新法 . 过度用化肥, 当心土壤“崩溃”. 新华日报, 2014-06-24(A05).
[14] 郭秀卿, 李新基, 崔福柱 , 等. 夏播高粱新品种晋杂30号的选育及栽培技术. 山西农业科学, 2016,44(6):754-756.
doi: 10.3969/j.issn.1002-2481.2016.06.09
[15] Elliott E T . Aggregate structure and carbon,nitrogen and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986,50:627-633.
doi: 10.2136/sssaj1986.03615995005000030017x
[16] 刘威, 张国英, 张英 , 等. 2种保护性耕作对农田土壤团聚体稳定性的影响. 水土保持学报, 2015,29(3):117-122.
doi: 10.13870/j.cnki.stbcxb.2015.03.023
[17] Brown H J, Cruse R M, Erbach D C , et al. Tractive device effects on soil physical properties. Soil & Tillage Research, 1992,22(1/2):41-53.
doi: 10.1016/0167-1987(92)90021-3
[18] Schaffer B, Attinger W, Schulin R . Compaction of restored soil by heavy agricultural machinery-soil physical and mechanical aspects. Soil & Tillage Research, 2007,93(1):28-43.
[19] Alkukku L, Weisskopf P, Chamenc W C T , et al. Prevention strategies for field traffic- induced subsoil compaction:a review Part 1. Machine/soil interactions. Soil & Tillage Research, 2003,73(1/2):145-160.
[20] 赵世伟, 苏静, 吴金水 , 等. 子午岭植被恢复过程中土壤团聚体有机碳含量的变化. 水土保持学报, 2006,20(3):121-125.
[21] 霍琳, 武天云, 蔺海明 , 等. 长期施肥对黄土高原旱地黑垆土水稳性团聚体的影响. 应用生态学报, 2008,19(3):545-550.
[22] Yang C M, Yang L Z, Ouyang Z . Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma, 2005,124(1/2):133-142.
doi: 10.1016/j.geoderma.2004.04.008
[23] Aoyama M, Angers D A , N’Dayegamiye A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications. Canadian Journal of Soil Science, 1999,79(2):295-302.
doi: 10.4141/S98-049
[24] Rasool R, Kukal S S, Hira G S . Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize-wheat system. Soil & Tillage Research, 2008,101:31-36.
[25] 邸佳颖, 刘小粉, 杜章留 , 等. 长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响. 中国生态农业学报, 2014,22(10):1129-1138.
doi: 10.13930/j.cnki.cjea.130121
[26] Zhou H, Lü Y Z, Yang Z C , et al. Effects of conservation tillage on soil aggregates in Huabei Plain,China. Scientia Agricultura Sinica, 2007,40(9):1973-1979.
[27] Nimmo J R, Perkins K S . Aggregates stability and size distribution//Methods of Soil Analysis,Part 4-Physical Methods. Soil Science Society of America,Inc. Madison,Wisconsin, USA, 2002: 317-328.
[28] 张保华, 刘子亭, 何毓蓉 , 等. 应用分形维数研究土壤团聚体与低吸力段持水性的关系. 土壤通报, 2006,37(5):854-860.
[29] 杨如萍, 郭贤仕, 吕军锋 , 等. 不同耕作和种植模式对土壤团聚体分布及稳定性的影响. 水土保持学报, 2010(1):252-256.
[30] 蔡立群, 齐鹏, 张仁陟 . 保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响. 水土保持学报, 2008(2):141-145.
[31] Deoyani V S, Comerford N B, Jokela E J , et al. Aggregation and aggregate carbon in a Forested Southeastern Coastal Plain Spodosol. Soil Science Society of America Journal, 2007,71(3):1779-1787.
doi: 10.2136/sssaj2006.0340
[32] 董莉丽 . 不同土地利用类型下土壤水稳性团聚体的特征. 林业科学, 2011,47(4):95-100.
doi: 10.11707/j.1001-7488.20110415
[33] 苏永中, 王芳, 张智慧 , 等. 河西走廊中段边缘绿洲农田土壤性状与团聚体特征. 中国农业科学, 2007,40(4):741-748.
doi: 10.3321/j.issn:0578-1752.2007.04.013
[34] 宋金红, 吴景贵 . 不同有机培肥对黑土团聚体含量及特征的影响. 西北农林科技大学学报(自然科学版), 2016,44(3):103-108.
doi: 10.13207/j.cnki.jnwafu.2016.03.015
[35] 孙天聪, 李世清, 邵明安 . 半湿润区长期施肥对土壤结构体分形特征的影响. 植物营养与肥料学报, 2007,13(3):417-422.
doi: 10.3321/j.issn:1008-505X.2007.03.011
[36] 杨长明, 欧阳竹, 董玉红 . 不同施肥模式对潮土有机碳组分及团聚体稳定性的影响. 生态学杂志, 2005,24(8):887-892.
doi: 10.3321/j.issn:1000-0933.2004.01.010
[37] 史奕, 陈欣, 沈善敏 . 土壤团聚体的稳定机制及人类活动的影响. 应用生态学报, 2002,13(11):1492-1494.
[38] 全国农业技术推广服务中心. 中国农业科学院农业资源与区划所耕地质量演变趋势研究. 北京: 中国农业科学技术出版社, 2008.
[39] 李贵华 . 国外近百年来的长期肥料定位试验. 新疆农业科学, 1990(3):140-142.
[40] 沈善敏 . 长期土壤肥力试验的科学价值. 植物营养与肥料学报, 1995,1(1):1-9.
doi: 10.11674/zwyf.1995.0101
[41] 沈善敏 . 国外长期肥料试验(一). 土壤通报, 1984(2):85-91.
[42] 沈善敏 . 国外长期肥料试验(二). 土壤通报, 1984(3):134-138.
[43] 沈善敏 . 国外长期肥料试验(三). 土壤通报, 1984(4):184-185.
[44] 田秀英 . 国内外的长期肥料试验研究. 渝西学院学报, 2002,15(1):14-17.
[1] Wang Hanxia, Shan Fuhua, Tian Liping, Ma Qiaoyun, . Analysis of Stability and Adaptability of Winter#br# Wheat Varieties in the Regional Trials of#br# the Northern Wheat Region of China [J]. Crops, 2018, 34(5): 40-44.
[2] Songtao Liu,Guo Liu,Tinashe Zenda,Hongyu Jin,Xuan Wang,Huijun Duan. Screening of High Yield and Stable Varieties of Summer Maize in Different Ecological of Hebei Province [J]. Crops, 2018, 34(2): 56-60.
[3] Zhengui Yuan,Pingping Chen,Lili Guo,Naimei Tu,Zhenxie Yi. Varietal Difference in Yield and Cd Accumulation and Distribution in Panicle of Rice Affected by Soil Cd Content [J]. Crops, 2018, 34(1): 107-112.
[4] Dongxian Ning,Yukun Zhao,Cuiping Yan,Xiuli Yang,Junhong Xiao,Liping Yang. Analysis and Evaluation of Different Models for Yield Stability of Peanut Cultivars in Southern Shanxi [J]. Crops, 2017, 33(3): 39-43.
[5] Yixin Tian,Fengju Gao. The Response of Growth and Dry Matter Accumulation and Distribution of High Protein Soybean to Plant Density [J]. Crops, 2017, 33(2): 121-125.
[6] . [J]. Crops, 2013, 29(3): 79-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .