Crops ›› 2021, Vol. 37 ›› Issue (4): 86-92.doi: 10.16035/j.issn.1001-7283.2021.04.013

Previous Articles     Next Articles

Effects of Water-Saving Irrigation Cultivation Model on Rice Quality and Starch RVA Profiles

Xue Jingfang(), Cai Yongsheng, Chen Shuqiang()   

  1. Rice Research Institute, Heilongjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Rice Cold Damage in Cold Region, Ministry of Agriculture and Rural Affairs, Jiamusi 154026, Heilongjiang, China
  • Received:2020-07-09 Revised:2020-09-16 Online:2021-08-15 Published:2021-08-13
  • Contact: Chen Shuqiang E-mail:xuejingfang147@163.com;chenshuqiang@163.com

Abstract:

High-quality drought-tolerant varieties were selected to save the water resources for evaluating sustainable rice production suitable for main cultivation in Heilongjiang province. Sixteen rice varieties mainly grown in Heilongjiang province were used as experimental materials. Two methods of water-saving irrigation (WI) and conventional irrigation (TI) were set up to study the effects of different irrigation methods on rice processing, nutritional quality, and starch RVA profiles. The results showed that WI treatment increased the brown rice rates of ten varieties by 0.56%-6.94%; increased the milled rice rates of eight varieties by 0.88%-8.09%; reduced the protein contents of eleven varieties by 0.81%-8.15%; reduced the amylase contents of nine varieties by 0.34%-5.21%, and improved the taste scores of eight varieties by 1.33%-13.06%. The analysis of RVA profiles of rice starch showed that WI treatment increased the peak viscosity of eleven varieties, reduced the hot paste viscosity and cold paste viscosity of five varieties, increased the breakdown value of nine varieties, and reduced the setback value of ten varieties. Taking the milled rice rate and taste score as the main measurement and considered other quality indicators, the varieties with improved rice quality were Suijing 4, Suijing 15, Suijing 17, Longjing 39, Longjing 47, Longjing 1525, and Longjing 1437 under WI treatment.

Key words: Rice, Water-saving irrigation, Rice quality, RVA profiles

Table 1

Effects of quality indexes of different rice varieties under different irrigation treatments"

品种
Variety
处理
Treatment
糙米率
Brown rice
rate (%)
±Δ
(%)
精米率
Milled rice
rate (%)
±Δ
(%)
蛋白质含量
Protein
content (%)
±Δ
(%)
直链淀粉含量
Amylose
content (%)
±Δ
(%)
食味评分
Taste
value
±Δ
(%)
绥粳4 TI 77.72b 65.83a 7.30a 20.47a 90.00b
Suijing 4 WI 82.80a 6.54 69.32a 5.31 7.13a -2.28 20.47a 0.00 95.70a 6.33
绥粳15 TI 76.10a 60.04b 8.00a 20.60a 89.73a
Suijing 15 WI 79.04a 3.87 64.90a 8.09 7.63a -4.58 20.76a 0.79 91.60a 2.08
绥粳17 TI 80.26a 66.91a 8.10a 21.50a 89.00a
Suijing 17 WI 82.88a 3.26 67.49a 0.88 7.73a -4.53 21.13a -1.71 85.70a -3.71
绥粳18 TI 77.68a 64.55a 7.57a 20.80a 98.63a
Suijing 18 WI 75.78a -2.43 62.68a -2.89 7.50a -0.88 20.13a -3.21 87.10b -11.69
龙庆稻21 TI 79.70a 64.68a 8.00a 21.43a 91.10a
Longqingdao 21 WI 80.15a 0.56 63.80a -1.37 7.53a -5.83 20.60a -3.89 77.13b -15.33
龙粳20 TI 81.56a 70.28a 8.03a 19.53a 86.90a
Longjing 20 WI 78.76a -3.44 67.49a -3.97 7.80a -2.90 19.47a -0.34 86.53a -0.42
龙粳29 TI 82.30a 69.10a 7.73a 19.70a 81.40a
Longjing 29 WI 81.32a -1.19 66.50a -3.76 7.87a 1.72 19.40a -1.52 74.50b -8.48
龙粳31 TI 83.48a 74.65a 7.27a 19.17a 86.20a
Longjing 31 WI 84.16a 0.81 74.53a -0.15 7.53a 3.67 19.43a 1.39 89.37a 3.67
龙粳39 TI 77.57a 65.52a 7.67a 20.97a 91.77a
Longjing 39 WI 78.64a 1.38 67.13a 2.45 8.00a 4.35 20.00a -4.61 93.77a 2.13
龙粳47 TI 81.23a 70.22a 7.80a 19.80a 81.23a
Longjing 47 WI 84.07a 3.49 73.48a 4.65 7.83a 0.43 19.87a 0.34 85.50a 5.25
龙粳59 TI 82.38a 68.25a 8.23a 19.63a 79.30a
Longjing 59 WI 82.05a -0.39 69.22a 1.42 8.17a -0.81 19.17a -2.38 72.13b -9.04
龙粳63 TI 77.01b 64.11b 8.00a 21.03a 85.20a
Longjing 63 WI 82.35a 6.94 68.18a 6.35 8.00a 0.00 21.23a 0.95 82.73a -2.90
龙粳65 TI 83.11a 71.14a 8.50a 19.23a 77.50a
Longjing 65 WI 83.70a 0.70 70.82a -0.45 8.03a -5.49 19.23a 0.00 82.03a 5.85
龙粳67 TI 83.32a 70.79a 8.67a 19.30a 77.60b
Longjing 67 WI 77.12a -7.44 65.41a -7.61 8.10b -6.54 19.60a 1.55 87.73a 13.06
龙粳1525 TI 78.16a 63.72a 7.77a 22.40a 93.37a
Longjing 1525 WI 79.86a 2.18 64.88a 1.82 7.13b -8.15 21.23a -5.21 84.00b -10.04
龙粳1437 TI 82.29a 72.34a 8.33a 19.50a 85.17a
Longjing 1437 WI 81.89a -0.48 70.61a -2.39 8.03a -3.60 19.43a -0.34 86.30a 1.33

Table 2

Differences in quality indexes under different irrigation treatments (n=16)"

处理
Treatment
米质性状
Rice quality
变幅
Amplitude
极差
Range
平均值
Average
标准差
Standard deviation
变异系数
Variation coefficient (%)
置信区间Confidence interval
95% 99%
TI 糙米率Brown rice rate (%) 76.10~83.48 7.38 80.24 2.53 3.16 78.89~81.59 78.38~82.11
精米率Milled rice rate (%) 60.04~74.65 14.61 67.63 3.84 5.68 65.58~69.68 64.80~70.47
蛋白质含量Protein content (%) 7.27~8.67 1.40 7.94 0.39 4.92 7.73~8.14 7.65~8.22
直链淀粉含量Amylose content (%) 19.17~22.40 3.23 20.32 0.97 4.79 19.80~20.83 19.60~21.03
食味评分Taste value 77.50~93.80 16.30 85.61 8.24 8.63 81.68~89.55 80.17~91.06
WI 糙米率Brown rice rate (%) 75.78~84.16 8.38 80.91 2.53 3.13 79.56~82.26 79.05~82.77
精米率Milled rice rate (%) 62.68~74.53 11.85 67.90 3.73 4.90 66.13~69.68 65.45~70.35
蛋白质含量Protein content (%) 7.13~8.17 1.04 7.76 0.32 4.14 7.58~7.92 7.51~7.99
直链淀粉含量Amylose content (%) 19.17~21.23 2.06 20.07 0.74 3.67 19.68~20.46 19.53~20.61
食味评分Taste value 72.13~91.60 19.47 87.88 7.39 9.38 83.49~92.27 81.81~93.96

Table 3

Effects of the characteristic values of starch RVA profiles of different rice varieties under different irrigation treatments"

品种
Variety
处理
Treatment
峰值黏度
Peak viscosity
±Δ
(%)
热浆黏度
Hot paste viscosity
±Δ
(%)
崩解值
Breakdown
±Δ
(%)
冷胶黏度
Cool paste viscosity
±Δ
(%)
消减值
Setback
±Δ
(%)
绥粳4 TI 2098a 1338a 760a 2558a 460a
Suijing 4 WI 2191a 4.43 1362a 1.79 829a 9.08 2586a 1.08 395b -14.20
绥粳15 TI 2230a 1457a 773a 2695a 465a
Suijing 15 WI 2170a -2.69 1431a -1.81 739a -4.36 2638a -2.11 468a 0.64
绥粳17 TI 1668a 1191a 477a 2405a 737a
Suijing 17 WI 1684a 0.96 1145a -3.86 539a 12.99 2367a -1.59 683a -7.37
绥粳18 TI 2032a 1320a 712a 2589a 557a
Suijing 18 WI 2134a 5.02 1368a 3.69 766a 7.49 2682a 3.58 548a -1.68
龙庆稻21 TI 1947a 1335a 612a 2618a 671a
Longqingdao 21 WI 1964a 0.87 1404a 5.17 560a -8.50 2626a 0.31 662a -1.34
龙粳20 TI 2219a 1482a 737a 2672a 453a
Longjing 20 WI 2169a -2.25 1449a -2.25 720a -2.26 2635a -1.38 466a 2.87
龙粳29 TI 2063a 1367a 695a 2594a 532a
Longjing 29 WI 2142a 3.85 1427a 4.34 715a 2.88 2665a 2.71 523a -1.69
龙粳31 TI 2446a 1539a 907a 2785a 338a
Longjing 31 WI 2364a -3.35 1478a -3.98 886a -2.28 2684b -3.60 320a -5.42
龙粳39 TI 2222a 1431a 791a 2571a 350a
Longjing 39 WI 2207a -0.65 1477a 3.19 731a -7.59 2626a 2.14 419a 19.83
龙粳47 TI 2239a 1375a 864a 2597a 358b
Longjing 47 WI 2105b -5.97 1371a -0.27 734b -15.04 2570a -1.07 464a 29.58
龙粳59 TI 2174a 1422a 752a 2667b 493a
Longjing 59 WI 2251a 3.57 1498a 5.37 753a 0.18 2772a 3.92 520a 5.47
龙粳63 TI 1586a 1088a 498a 2123a 537a
Longjing 63 WI 1596a 0.63 1108a 1.81 488a -1.94 2185a 2.89 589a 9.55
龙粳65 TI 2244a 1480a 764a 2696a 452a
Longjing 65 WI 2352a 4.84 1558a 5.29 794a 3.97 2774a 2.89 422a -6.78
龙粳67 TI 2282a 1602a 679a 2832a 550a
Longjing 67 WI 2381a 4.37 1662a 3.74 719a 5.84 2899a 2.37 518a -5.94
龙粳1525 TI 1841b 1241a 600b 2479b 638a
Longjing 1525 WI 2110a 14.59 1401a 12.92 709a 18.05 2714a 9.49 604a -5.23
龙粳1437 TI 1975b 1338a 637b 2470b 495a
Longjing 1437 WI 2187a 10.73 1447a 8.09 740a 16.28 2669a 8.04 482a -2.69

Table 4

Differences in RVA profiles under different irrigation treatments (n=16)"

处理
Treatment
RVA 变幅
Amplitude
极差
Range
平均值
Average
标准差
Standard deviation
变异系数
Variation coefficient
置信区间Confidence interval
95% 99%
TI 峰值黏度 1586~2446 860 2079 230.98 11.11 1956~2202 1909~2249
热浆黏度 1088~1602 514 1375 130.28 9.47 1306~1445 1279~1471
崩解值 477~907 430 704 117.69 16.73 641~766 617~790
冷胶黏度 2123~2832 709 2584 165.79 6.41 2496~2673 2462~2707
消减值 338~737 399 505 112.09 22.18 446~565 423~588
峰值黏度 1596~2381 785 2125 217.59 10.24 2009~2241 1965~2286
WI 热浆黏度 1108~1662 554 1412 134.90 9.56 1339~1484 1312~1511
崩解值 488~886 398 714 103.58 14.51 659~769 637~790
冷胶黏度 2185~2899 714 2631 163.61 6.22 2544~2718 2510~2751
消减值 320~683 363 505 97.11 19.22 453~557 434~577

Table 5

Correlation between RVA profiles of rice starch and processing and nutritional quality under different irrigation treatments"

处理Treatment RVA 糙米率Brown rice rate 精米率Milled rice rate 蛋白质含量Protein content 直链淀粉含量Amylose content
TI 峰值黏度 -0.7028** -0.7903** 0.1576 -0.7645
热浆黏度 -0.5135* -0.5999* 0.0252 -0.5713*
崩解值 -0.8117** -0.8876** 0.2818 -0.8686**
冷胶黏度 -0.4031 -0.4572 0.0862 -0.4156
消减值 0.8531** 0.9530** -0.1953 0.9609**
WI 峰值黏度 -0.4493 -0.7231** 0.1616 -0.6636
热浆黏度 -0.2464 -0.5264* 0.0085 -0.4938*
崩解值 -0.6232** -0.8340** 0.3287 -0.7514**
冷胶黏度 -0.0931 -0.3773 -0.0576 -0.3173
消减值 0.8505** 0.9855** -0.4592 0.9528**
[1] Zhang Q F. Strategy of developing green super rice. Proceedings of the National Academy of Sciences of the United States of America, 2007,104:16402-16409.
[2] 朱德峰, 程式华, 张玉屏, 等. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010,43(3):486-495.
[3] 茆智. 水稻节水灌溉及其对环境的影响. 中国工程科学, 2002,4(7):8-16.
[4] Cheng W, Zhang G, Zhao G, et al. Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crop Research, 2003,80(3):245-252.
[5] 孟德龙, 杨波, 秦德荣, 等. 淮北稻区不同栽培方式稻米品质的比较. 江苏农业科学, 2011,39(6):143-145.
[6] 霍中洋, 李杰, 许轲, 等. 高产栽培条件下种植方式对不同生育类型粳稻米质的影响. 中国农业科学, 2012,45(19):3932-3945.
[7] 杨波, 徐大勇, 张洪程, 等. 直播、机插与手栽水稻生长发育、产量及稻米品质比较研究. 扬州大学学报(农业与生命科学版), 2012,33(2):39-44.
[8] 钱银飞, 张洪程, 吴文革, 等. 机插穴苗数对不同穗型粳稻品种产量及品质的影响. 作物学报, 2009,35(9):1698-1707.
[9] 叶全宝, 张洪程, 李华, 等. 施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响. 作物学报, 2005,31(1):124-130.
[10] 王成瑷, 王伯伦, 张文香, 等. 栽培密度对水稻产量及品质的影响. 沈阳农业大学学报, 2004,35(4):318-322.
[11] 周培南, 冯惟珠, 许乃霞, 等. 施氮量和移栽密度对水稻产量及稻米品质的影响. 扬州大学学报(农业与生命科学版), 2001,22(1):27-31.
[12] 金军, 徐大勇, 蔡一霞, 等. 施氮量对水稻主要米质性状及RVA谱特征参数的影响. 作物学报, 2004,30(2):154-158.
[13] 万靓军, 霍中洋, 龚振恺, 等. 氮肥运筹对杂交稻主要品质性状及淀粉RVA谱特征的影响. 作物学报, 2006,32(10):1491-1497.
[14] Zhang Z C, Zhang S F, Yang J C, et al. Yield,grain quality of water use efficiency of rice under non-flooded mulching cultivation. Field Crop Research, 2008,108(1):71-81.
[15] Yang J C, Zhang J H, Wang Z Q, et al. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research, 2003,81(1):69-81.
[16] 刘凯, 张耗, 张慎凤, 等. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008,34(2):268-276.
[17] 刘立军, 王康君, 卞金龙, 等. 结实期干湿交替灌溉对籽粒蛋白质含量不同的转基因水稻的生理特性及产量的影响. 中国水稻科学, 2014,28(4):384-390.
[18] 徐国伟, 王明, 唐成, 等. 旱种方式对水稻产量与品质的影响. 作物学报, 2006,32(1):112-117.
[19] 张荣萍, 马均, 王贺正, 等. 不同灌水方式对水稻结实期一些生理性状和产量的影响. 作物学报, 2008,34(3):486-495.
[20] 刘立军, 李鸿伟, 赵步洪, 等. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012,26(1):77-84.
[21] 陈培峰, 顾俊荣, 韩立宇, 等. 麦秸还田和结实期灌溉方式对超级稻籽粒结实和米质的影响. 中国生态农学报, 2014,2(5):543-550.
[22] 彭世彰, 郝树荣, 刘庆, 等. 节水灌溉水稻高产优质成因分析. 灌溉排水, 2000,19(3):3-7.
[23] 胡继超, 姜东, 曹卫星, 等. 短期干旱对水稻叶水势、光合作用及干物质分配的影响. 应用生态学报, 2004,15(1):63-67.
[24] 吕银斐, 任艳芳, 刘冬, 等. 不同水分管理方式对水稻生长、产量及品质的影响. 天津农业科学, 2016,22(1):106-110.
[25] 蒋鹏, 熊洪, 张林, 等. 分蘖期干旱对不同施氮量和移栽密度下杂交稻产量及稻米品质的影响. 湖南农业大学学报(自然科学版), 2016,42(5):465-471.
[26] 顾俊荣, 季红娟, 韩立宇, 等. 不同水氮管理模式对粳稻籽粒结实和主要品质性状的影响. 中国稻米, 2015,21(4):44-48.
[27] 张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011,44(24):4988-4998.
[28] 舒庆尧, 吴殿星, 夏英武, 等. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31(3):25-29.
[29] 朱满山, 顾铭洪, 汤述翥, 等. 不同粳稻品种和DH群体稻米淀粉RVA谱特征与蒸煮理化指标及相关分析. 作物学报, 2007,33(3):411-418.
[30] 邹冬生, 唐建军. 水稻籽粒灌浆特性与米质的关系. 贵州农业科学, 1987(2):12-14.
[31] 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制. 扬州:扬州大学, 2004.
[32] 蔡一霞. 土壤水分对稻米品质形成的影响及其机理. 扬州:扬州大学, 2004.
[33] 张亚洁, 杨连新, 李俊贤, 等. 土壤水分对旱稻米质性状及RVA谱特征参数影响. 扬州大学学报(农业与生命科学版), 2004,25(4):7-11.
[1] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
[2] Tong Tianyi, Cai Jianxuan, Zhang Jisheng, Li Lin, Ma Lin, He Roujing, Tang Xiangru. Effects of Fertilizer Types on Yield, Quality and Aroma of Fragrant Rice [J]. Crops, 2021, 37(4): 152-158.
[3] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[4] Ling Chen, Liu Hong, Yang Zhe, Huang Zhanquan, Chen Mengqiang, Rao Dehua, Xu Zhenjiang. Effects of Double-Cropping Rice Cultivation on the Expression of Quantitative Characteristics of Rice DUS Testing Example Varieties [J]. Crops, 2021, 37(4): 18-25.
[5] Zhang Jun, Deng Dasun, Liu Jianjun, Zhou Wenxi, Huang Qianru, Zhang Weijian. Mechanization Cultivation Model of Ratoon Rice with Straw Incorporation in Double Rice Cropping Region in South of Yangtze River Valley [J]. Crops, 2021, 37(4): 212-216.
[6] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[7] Gao Qing, Zhang Yaling, Zhou Yili, Yu Lianpeng, Nie Qiang, Jin Xuehui. Identification of Major Resistance Genes and Resistance Evaluation to Rice Blast in Japonica Rice Varieties in Heilongjiang Province [J]. Crops, 2021, 37(4): 59-66.
[8] Wang Guojiao, Song Peng, Yang Zhenzhong, Zhang Wenzhong. Effects of Straw Returning on Photosynthetic Matter Production Characteristics, Quality of Rice and Soil Nutrients [J]. Crops, 2021, 37(4): 67-72.
[9] Yang Lei, Jin Yandi, Liu Houjun. Effects of Iron, Cadmium and Their Interaction on the Primary Reaction of Photosynthesis in Rice [J]. Crops, 2021, 37(4): 144-151.
[10] Wu Zhifeng, Liu Kaili, Le Lihong, Chen Zhongping, Tang Shuangqin, Li Zujun, Han Ruicai, Zeng Yanhua, Zeng Yongjun, Pan Xiaohua, Shi Qinghua, Wu Ziming. Study on Relieving Cold Stress of Direct-Seeded Late Rice at Heading Stage by Chemical Control [J]. Crops, 2021, 37(3): 114-119.
[11] Meng Xiangyu, Ran Cheng, Liu Baolong, Zhao Zhexuan, Bai Jingjing, Geng Yanqiu. Effects of Straw Returning to Field and Nitrogen Application on Soil Nutrients and Rice Yield in Black Soil Areas of Northeast China [J]. Crops, 2021, 37(3): 167-172.
[12] Yi Zhenxie, Wang Yuanyuan, Gu Zihan, Shuai Zeyu, Tu Naimei, Chen Pingping. Study on the Feasibility of Alternative Planting of Rapeseed-Middle Rice to Double Cropping Rice in Cadmium Polluted Rice Area [J]. Crops, 2021, 37(3): 65-69.
[13] Liu Ping, Shao Caihong, Zhang Honglin, Liu Guangrong. Effects of Dry-Wet Alternate Irrigation on Double Cropping Rice Yield and Quality during Late Development Stage under Seasonal Rain Condition [J]. Crops, 2021, 37(2): 153-159.
[14] Xing Yuan, He Zhonghua. Analysis of Characteristics of Rice Drought in Guizhou Province Based on Water Deficit Index [J]. Crops, 2021, 37(2): 191-199.
[15] Zhao Kaocheng, Ma Jun, Ye Ying, Huang Lifen, Zhuang Hengyang. Research Advance on the Comprehensive Effects of Ecological Farming of Rice and Shrimp [J]. Crops, 2021, 37(2): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!