Crops ›› 2021, Vol. 37 ›› Issue (5): 20-27.doi: 10.16035/j.issn.1001-7283.2021.05.004

Previous Articles     Next Articles

Leaf Rust Resistance Gene Analysis of 12 Wheat Cultivars in Main Producing Areas

Duan Zhenying1(), Xu Xinyu1, Li Xing2, Li Zaifeng2, Ma Jun3, Yao Zhanjun1()   

  1. 1College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Germplasm Resources of Education Ministry, Baoding 071001, Hebei, China
    2College of Plant Protection, Hebei Agricultural University/Control Center of Plant Disease and Plant Pests of Hebei Province, Baoding 071001, Hebei, China
    3College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2020-10-18 Revised:2021-04-13 Online:2021-10-15 Published:2021-10-14
  • Contact: Yao Zhanjun E-mail:dzy950910@163.com;yzhj201@aliyun.com

Abstract:

In recent years, wheat leaf rust has a tendency of aggravation, breeding resistant varieties is the most environmental friendly and effective way to reduce the harm of wheat leaf rust. Twelve wheat varieties and 35 donor lines were inoculated with 19 Chinese pathotypes of Puccinia triticina for leaf rust at seedling stage, and the rust resistance genes in the varieties to be tested were explored through gene derivation and genealogy analysis, and further verified by molecular marker detection. The severity and prevalence rates of wheat were investigated by inoculation of virulent rusts mixed with physiological small species at the stage of plant growth, and selected the slow rust varieties. The results showed that Lr1, Lr26, Lr34, Lr37 and Lr46 were detected in nine varieties of Shixin 828, Bainong 3217, Ji’nan 2, Taishan 1, Shite 14, Jinmai 2148, Yannong 15, Xiaoyan 6, Wenmai 6, among which several resistance genes were found in some varieties. Some of these varieties also contained multiple resistance genes and ten slow rust resistant varieties were selected from the identification of wheat rust-resistant leaves at the mature stage, including Bainong 3217, Pingyang 27, Ji’nan 2, Taishan 1, Shite 14, Jinmai 2148, Bima 4, Yannong 15, Xiaoyan 6, Wenmai 6, a total of ten slow rust peasant wheat varieties and Bima 4 and Xiaoyan 6 were the backbone parents of wheat breeding. It is still important to explore the resistance genes of these varieties for breeding new wheat varieties resistant to leaf rust.

Key words: Wheat, Gene postulation, Molecular marker, Resistance gene, Slow rust varieties

Table 1

Primer sequences and PCR amplification programs"

基因
Gene
引物
Primer
引物序列(5´→3´)
Sequence of primer (5´→3´)
反应程序
Cycle condition
连锁标记
Linked marker
参考文献
Reference
Lr1 WR003 F GGGACAGAGACCTTGGTGGA 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [24]
WR003 R GACGATGATGATTTGCTGCTGG
Lr9 J13/1 TCCTTTTATTCCGCACGCCGG 94℃ 2min;35个循环(94℃ 30s;68.5℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [25]
J13/2 CCACACTACCCCAAAGAGACG
Lr10 Fl.2245 GTGTAATGCATGCAGGTTCC 94℃ 2min;35个循环(94℃ 45s;60℃ 45s;72℃ 30s);72℃ 3 min;4℃保温 STS [26]
Lr10-6/r2 AGGTGTGAGTGAGTTATGTT
Lr19 SCS265 F GGCGGATAAGCAGAGCAGAG 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2 min;10℃保温 SCAR [26]
SCS265 R GGCGGATAAGTGGGTTATGG
Lr19 SCS253 F GCTGGTTCCACAAAGCAAA 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2min;4℃保温 SCAR [27]
SCS253 R GGCTGGTTCCTTAGATAGGTG
Lr20 STS638 L ACAGCGATGAAGCAATGAAA 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [28]
STS638 R GTCCAGTTGGTTGATGGAAT
Lr24 J9/1 TCTAGTCTGTACATGGGGGC 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2 min;4℃保温 STS [29]
J9/2 TGGCACATGAACTCCATACG
Lr26 ω-secalin F ACCTTCCTCATCTTTGTCCT 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [30]
ω-secalin R CCGATGCCTATACCACTACT
Lr26 Glu-B3 F GGTACCAACAACAACAACCC 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [31]
Glu-B3 R GTTGCTGCTGAGGTTGGTTC
Lr34 csLV34 F GTTGGTTAAGACTGGTGATGG 94℃ 2min;35个循环(94℃ 30s;55℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [32]
csLV34 R TGCTTGCTATTGCTGAATAGT
Lr37 VENTRIUP AGGGGCTACTGACCAAGGCT 94℃ 2min;35个循环(94℃ 30s;65℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [33]
LN2 TGCAGCTACAGCAGTATGTACACAAAA
Lr46 csLV46G22F F TCGACTTTGGAATGGAGTTGC 94℃ 2min;35个循环(94℃ 30s;60℃ 30s;72℃ 30s);72℃ 2min;4℃保温 STS [34]
csLV46G22 R GGCGAAGATGCCATCATCCACCG

Table 2

The results of identification of resistance of 35 vector lines, 12 tested varieties and the control variety Zhengzhou 5389 to 19 pathotypes of P. triticina at seedling stage"

品种(系)
Cultivar (line)
侵染型Infection types to P. triticina pathotypes
FH
DR
FH
JS
FH
GQ
PH
GN
FH
JR
FH
SQ
FG
KQ
PH
DQ
PH
GL
FH
JQ
FH
BR
FG
BQ
FH
DQ
FH
GQ
FH
JT
TG
KS
FH
JS
PH
TS
FH
DQ
RL6003 (Lr1) 0 ; 1 3+ 1 ; 1 4 3+ ; ; ; 1 ; 1 4 1 3+ ;
RL6016 (Lr2a) ; 1 1 1 1 ; ; ; ; ; ; ; 1 1 ; 3+ ; 1 1
RL6047 (Lr2c) 3+ 4 3 3 4 3 3+ 3+ 3 3+ 3 3 3+ 4 3+ 3+ 4 3+ 3+
RL6002 (Lr3) 4 3+ 3+ 3 3+ 3+ 4 4 3+ 3+ 3+ 3+ 3+ 3+ 4 3+ 3+ 4 4
RL6010 (Lr9) 0 0 0 0 0 0 0 ; 0 0 0 0 0 0 0 0 0 ; 0
RL6005 (Lr16) 4 4 3+ 3+ 3+ 3+ 4 4 3+ 3+ 3+ 4 3+ 3 3+ 4 3+ 3+ 3+
RL6064 (Lr24) ; ; 0 ; ; ; ; ; ; ; ; ; ; ; ; ; ; 1 ;
RL6078 (Lr26) 3+ 3 4 3 4 3+ 1 3+ 3 3+ 3+ 1 3+ 3 3+ 2 3+ 4 3+
RL6007 (Lr3ka) 2 1 2 1 1 3 2 2 1 1 1 2 1 2 2 2 1 3+ 2
RL6053 (Lr11) 2 3+ 3 3+ 3+ 3 3 2 3+ 3 1 1 1 3 3 3 3 3+ 2
RL6008 (Lr17) 3+ 3+ 1+ 2 3 3 3 3 2 3+ 2 2+ 3 1 3+ 3+ 3 3+ 3
RL6049 (Lr30) 1 2 2 1 1 2 3 1 1 1 1 1 1 1 1 3+ 1 3+ 1
RL6051 (LrB) 3+ 3+ 3+ 3 3+ 3+ 4 3+ 4 3+ 4 3+ 3+ 4 4 3 4 3+ 4
RL6004 (Lr10) 4 3+ 3+ 2 4 3+ 3+ 3 1 3 4 4 3+ 4 4 4 4 4 3+
RL6013 (Lr14a) X 3 X 3+ X X 1 2 1 1 X 1+ 1 2 3 3+ 3 4 1
RL6009 (Lr18) 3 1 1 2 3 1 1 1 1 1+ 3 1 1 1 3 1 1 2 1
RL6019 (Lr2b) 2 3 1+ 1 3 3 2 2 1 3 1 2 2 2 3 3+ 2 1 2
RL6042 (Lr3bg) 3+ 4 3 3 3+ 3+ 3+ 4 3+ 4 3+ 3+ 3+ 3+ 3+ 4 3+ 4 4
RL4031 (Lr13) 3+ 3+ 2 2 2 4 3 3+ 3 3+ 2 3+ 3+ 3 3+ 3+ 3 4 3
RL6006 (Lr14b) 4 3+ 3+ 3 3+ 3+ 4 3+ 2 3+ 4 3+ 4 4 4 2 3+ 4 3+
品种(系)
Cultivar (line)
侵染型Infection types to P. triticina pathotypes
FH
DR
FH
JS
FH
GQ
PH
GN
FH
JR
FH
SQ
FG
KQ
PH
DQ
PH
GL
FH
JQ
FH
BR
FG
BQ
FH
DQ
FH
GQ
FH
JT
TG
KS
FH
JS
PH
TS
FH
DQ
RL6052 (Lr15) 1 1 ; 1 0 ; 0 4 4 3 ; 0 ; ; 1 3+ 3+ 0 0
RL6040 (Lr19) ; 0 0 0 0 ; 0 0 0 ; 0 ; 0 0 0 0 ; ; ;
RL6092 (Lr20) ; 1 ; 3 1 3+ 1 3 3+ 1 1 ; 1 ; 1 1 3 1 1
RL6043 (Lr21) 3 2 1+ 1 3 3+ 2 1 1 2 1 1 1 1 2 1 1 1 2
RL6012 (Lr23) 3+ 3+ 3+ 3+ 3+ 4 3 3+ 3 3+ 3+ 3+ 4 3+ 3+ 3+ 3 3+ 3+
RL6079 (Lr28) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ; 0
RL6080 (Lr29) 1 1 1+ 1+ 1 1 1 2 1 1 1+ ; 2 ; 1 1 1 1 1
RL6057 (Lr33) 3+ 3 3+ 3 3+ 3+ 3 3+ 3+ 3+ 3+ 4 3+ 3+ 3+ 3 3 3+ 3+
E84018 (Lr36) 1 1+ 1+ 1+ 1 2 1+ 2+ 2 2 1 1 1 1 3 1 1 2 1
KS86NGRC02 (Lr39) 3 2 2 2 2 2 3 3 2 2 3+ 3+ 3 3 2 3+ 1 2+ 3+
KS91WGRC11 (Lr42) 2 2 1+ 1 1 0 1 1+ 1 2 1 1 1 1+ 1 1+ 1 1 1
RL6147 (Lr44) ; 3+ 3 3 3 3 3 2 1 3 3 3+ 3 2 3+ 2 3 3 4
RL6144 (Lr45) 2 3+ 2 4 1 4 2 3+ 3+ 3 1 2 2+ 2 3 2 1 2+ 3
PAVON76 (Lr47) 0 0 0 0 ; 0 0 1 0 0 0 0 0 0 0 0 0 ; 0
C78.5 (Lr51) ; ; ; ; ; ; ; ; ; ; 1 ; 1 ; ; ; ; 0 ;
石新828 Shixin 828 3 3 3 3 3+ 3+ 3 3 3 3+ 3 3+ 3 3+ 3+ 2 3+ 3 3+
百农3217 Bainong 3217 1 1 2 1+ 1 2 1 3 2 ; ; 1 ; 1 ; 3 1 2+ ;
平阳27 Pingyang 27 1 1 ; ; 1 1 1 2 2 1 1 1 ; ; ; 2 1 2 ;
济南2号Ji’nan 2 3 3 3+ 3 3+ 3+ 3+ 3+ 3+ 3+ 3 3 ; 2 3 2 1 4 3
泰山1号Taishan 1 3+ 3 3+ 3+ 3+ 3+ ; 3+ 3+ 3 3 1 3 2+ 3+ 1+ 3+ 3+ 3
石特14 Shite 14 1 1 1 2 2 2 ; 1 2 1 1 1 1 ; ; ; 1 2 2
晋麦2148 Jinmai 2148 3+ 3 3+ 3+ 3+ 3+ 3+ 4 3+ 3+ 4 3 3 3+ 3+ 3+ 3+ 4 3
碧蚂4号Bima 4 3 3+ 3+ 3 2 3 3+ 4 3+ 3+ 4 2 2+ 2+ 2 2+ 1 3+ 1
碧蚂1号Bima 1 3+ 3+ 3+ 3 3+ 3+ 1 4 3 3+ 4 ; 3 3 3+ 3 3+ 4 3+
烟农15 Yannong 15 2 1 1 ; 1 1 ; 2+ 2 ; ; ; 1 ; ; 2+ 1 2 1
小偃6号Xiaoyan 6 3+ 3+ 3+ 3+ 3+ 3+ 3+ 4 4 3+ 3+ 3 3 3 3+ 3+ 3 3+ 3
温麦6号Wenmai 6 3+ 3+ 3+ 3+ 3+ 3+ 3+ 4 3+ 3+ 3 3 3+ 3 3 3+ 3+ 3+ 3
郑州5389
Zhengzhou 5389
3 4 3+ 4 3 4 3+ 3+ 4 3+ 4 4 4 3+ 4 3+ 3+ 4 3

Fig.1

PCR amplification and molecular marker detection results of 12 wheat varieties M: DM2000 marker or pBR322 DNA marker; Z: Zhengzhou 5389; 1-12: Shixin 828, Bainong 3217, Pingyang 27, Ji’nan 2, Taishan 1, Shite 14, Jinmai 2148, Bima 4, Bima 1, Yannong 15, Xiaoyan 6, Wenmai 6"

Table 3

Infection types to Puccinia triticina, final disease severity, general rate, disease index results of 12 tested varieties, slow rust cultivar SAAR and susceptible cultivar Zhengzhou 5389"

品种
Cultivar
混合小种苗期侵染型
Mixed small species infection
type at seedling stage
严重度Final disease severity 普遍率
General rate
(%)
病情指数
Disease index
(%)
2017-2018 2018-2019 平均Average
SAAR 3 1 1 1 100 1
石新828 Shixin 828 4 40 30 35 100 35
百农3217 Bainong 3217 3 1 5 3 98 2.94
平阳27 Pingyang 27 3 1 5 3 100 3
济南2号Ji’nan 2 3+ 10 25 17.5 100 17.5
泰山1号Taishan 1 3 1 5 3 100 3
石特14 Shite 14 3 1 5 3 100 3
晋麦2148 Jinmai 2148 4 15 15 15 100 15
碧蚂4号Bima 4 3+ 5 15 10 100 10
碧蚂1号Bima 1 4 40 60 50 98 49
烟农15 Yannong 15 3 1 1 1 100 1
小偃6号Xiaoyan 6 3 5 10 7.5 100 7.5
温麦6号Wenmai 6 3 5 5 5 100 5
郑州5389 Zhengzhou 5389 4 80 90 85 100 85
[1] 许敏青, 王珅, 孟庆芳, 等. 我国部分地区小麦叶锈菌遗传多样性的SSR分析. 农业生物技术学报, 2013, 21(1):89-96.
[2] Kolmer J A, Ordoñez M E, Manisterski J, et al. Genetic differentiation of Puccinia triticina populations in central Asia and the Caucasus. Phytopathology, 2007, 97(9):1141.
doi: 10.1094/PHYTO-97-9-1141 pmid: 18944179
[3] Bolton M. Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 2010, 9(5):563-575.
doi: 10.1111/mpp.2008.9.issue-5
[4] Huerta-Espino J, Singh R P, Germán S, et al. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 2011, 179(1):143-160.
doi: 10.1007/s10681-011-0361-x
[5] Ordoñez M E, Germán S E, Kolmer J A. Genetic differentiation within the Puccinia triticina population in South America and comparison with the North American population suggests common ancestry and intercontinental migration. Phytopathology, 2010, 100(4):376.
doi: 10.1094/PHYTO-100-4-0376 pmid: 20205541
[6] 王运博, 许高峰. 经济全球化进程中中国粮食安全问题研究. 吉林农业大学学报, 2014, 36(2):243-249.
[7] 刘成, 闫红飞, 宫文萍, 等. 小麦叶锈病新抗源筛选. 植物遗传资源学报, 2013, 14(5):936-944.
[8] 张林, 张梦雅, 高颖, 等. 山东省12个主栽小麦品种(系)抗叶锈性分析. 植物遗传资源学报, 2017, 18(4):676-684.
[9] 袁军海, 沈凤英, 吴伟刚, 等. 春小麦品种沈免2063抗叶锈性遗传分析. 植物保护学报, 2018, 45(4):804-811.
[10] 姚金保, 姚国才, 杨学明, 等. 中国小麦抗纹枯病育种研究进展. 江苏农业学报, 2007, 23(3):248-251.
[11] 隋建枢, 王化陆, 辛智海, 等. 122份小麦品种(系)抗叶锈病基因Lr26Lr34Lr38分子标记检测. 种子, 2016, 35(5):41-45.
[12] 袁军海, 陈万权. 春小麦品种青春221抗叶锈性遗传分析. 植物保护学报, 2013, 40(1):20-26.
[13] 郑慧敏, 温晓蕾, 郝晨阳, 等. 70份国外小麦品种(系)的苗期和成株期抗叶锈病鉴定. 作物学报, 2019, 45(10):1455-1467.
[14] 张林, 张梦雅, 高颖, 等. 山东省12个主栽小麦品种(系)抗叶锈性分析. 植物遗传资源学报, 2017, 18(04):676-684.
[15] 焦悦, 王思曼, 赵喜兰, 等. 50个国外小麦品种(系)抗叶锈性鉴定. 河南农业科学, 2019, 48(12):79-88.
[16] Qureshi N, Bariana H, Kumran V V, et al. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theoretical and Applied Genetics, 2018, 131(2):1-8.
doi: 10.1007/s00122-017-2954-9
[17] 金夏红, 冯国华, 刘东涛, 等. 小麦抗叶锈病遗传研究进展. 麦类作物学报, 2017, 37(4):504-512.
[18] Long D L. A North American system of nomenclature for Puccinia recondita f. sp. Tritici. Phytopathology, 1989, 79(5):525-529.
doi: 10.1094/Phyto-79-525
[19] Roelfs A P, Singh R P, Saari E E. Resistance to leaf and stem rusts of wheat:concepts and methods of disease management. CIMMYT, 1992:42-45.
[20] Dubin H J, Torres E. Causes and consequences of the 1976-1977 wheat leaf rust epidemic in Northwest Mexico. Annual Review of Phytopathology, 1981, 19(1):41-49.
doi: 10.1146/annurev.py.19.090181.000353
[21] Flor H H. Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology, 1955, 45(12):680-685.
[22] 李荣华, 夏岩石, 刘顺枝, 等. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9):14-16.
[23] Sharp P J, Kreis M, Shewry P R, et al. Location of β-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75(2):286-290.
doi: 10.1007/BF00303966
[24] Qiu J W, Schürch A C, Yahiaoui N, et al. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theoretical and Applied Genetics, 2007, 115(2):159-168.
doi: 10.1007/s00122-007-0551-z
[25] Schachermayr G, Siedler H, Gale M D, et al. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theoretical and Applied Genetics, 1994, 88(1):110-115.
doi: 10.1007/BF00222402 pmid: 24185890
[26] Schachermayr G, Feuillet C, Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Molecular Breeding, 1997, 39(1):65-74.
doi: 10.1007/s11032-019-0970-y
[27] Gupta S K, Charpe A, Prabhu K V, et al. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theoretical and Applied Genetics, 2006, 113(6):1027-1036.
doi: 10.1007/s00122-006-0362-7
[28] Neu C, Stein N, Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome, 2002, 45(4):737-744.
doi: 10.1139/g02-040
[29] Schachermayr G M, Messmer M M, Feuillet C, et al. Identification of molecular markers linked to the Agrophyron elongatumderved leaf rust resistance gene Lr24 in wheat. Theoretical and Applied Genetics, 1995, 90(7):982-990.
doi: 10.1007/BF00222911
[30] Chai J F, Zhou R H, Jia J Z, et al. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations. Plant Breeding, 2006, 125(3):302-304.
doi: 10.1111/pbr.2006.125.issue-3
[31] Froidmont D D. A codominant marker for 1BL/1RS wheat-rye translocation via multiplex PCR. Journal of Cereal Science, 1998, 27(3):229-232.
doi: 10.1006/jcrs.1998.0194
[32] Lagudah E S, Mcfadden H, Singh R P, et al. Molecular genetic of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 2006, 114(1):21-30.
pmid: 17008991
[33] Baszczyk L, Goyeau H, Huang X Q, et al. Identifying leaf rust resistance genes and mapping gene Lr37 on the microsatellite map of wheat. Cellular and Molecular Biology Letters, 2004, 9(4B):869-878.
[34] Kazuhiro S, Singh R P, Manilal H M. Tagging of slow rusting genes for leaf rust,Lr34 and Lr46,using microsatellite markers in wheat. Research Highlights, 2001, 93:881-890.
[35] 杨华丽, 张晓玲, 赵艳博, 等. 小麦品种莱州137抗叶锈病鉴定及基因检测. 植物遗传资源学报, 2018, 19(2):289-295.
[36] Li Z F, Xia X C, He Z H, et al. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Disease, 2010, 94(1):45-53.
doi: 10.1094/PDIS-94-1-0045 pmid: 30754399
[37] 刁慧珊, 梁邦平, 李家创, 等. 156份小麦种质资源的纹枯病抗性鉴定与评价. 麦类作物学报, 2018, 38(11):123-131.
[38] Colin W, Hiebert J B, Thomas B D, et al. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theoretical and Applied Genetics, 2010, 121(6):1083-1091.
doi: 10.1007/s00122-010-1373-y pmid: 20552325
[39] 张晓玲, 张换换, 徐新玉, 等. 河北省12个小麦主栽品种(系)抗叶锈性鉴定及基因分析. 植物遗传资源学报, 2019, 20(4):982-990.
[40] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003(1):190-194.
[41] 刘新春, 赖运平, 刘仙俊, 等. Lr1基因在四个小麦骨干亲本衍生系中的分布及选择效应. 麦类作物学报, 2014, 34(5):597-602.
[42] 丁艳红, 刘欢, 师丽红, 等. 28个小麦微核心种质抗叶锈性分析. 作物学报, 2010, 36(7):1126-1134.
[43] Mclntosh R A, Baker E P. Cytogenetical studies in wheat IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970, 19(1):71-77.
doi: 10.1007/BF01904668
[44] Cloutier S, Mccallum B D, Loutre C, et al. Leaf rust resistance gene Lr1,isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology, 2007, 65(1/2):93-106.
doi: 10.1007/s11103-007-9201-8
[45] 孟倩, 孙道杰, 谢静雅. 部分小麦材料及黄淮南片区试品种Lr34/Yr18/Pm38基因型检测. 麦类作物学报, 2011, 31(2):224-228.
[46] 魏新燕, 杨文香, 刘大群, 等. 150个小麦品种(系)抗叶锈基因Lr35分子检测. 中国农业科学, 2004, 37(12):1951-1954.
[47] Singh R P, Mujeeb-Kazi A, Huerta-Espino J. Lr46:a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1998, 88(9):890-894.
doi: 10.1094/PHYTO.1998.88.9.890 pmid: 18944865
[1] Lin Ruxia, Guo Fengdan, Wang Xingjun, Xia Han, Hou Lei. Advances in Peanut Molecular Breeding [J]. Crops, 2021, 37(5): 1-5.
[2] Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127.
[3] Cao Lixia, Zhou Haitao, Zhang Xinjun, Shi Bihong, Zhang Lixia, Li Yunxia, Liu Junxin, Bai Jing, Zhao Shifeng. Effects of Sowing Rates on Yield of Two Buckwheat Varieties in Northern Hebei [J]. Crops, 2021, 37(5): 140-145.
[4] Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49.
[5] Qi Xiaolei, Li Xingfeng, Lü Guangde, Wang Ruixia, Wang Jun, Sun Xianyin, Sun Yingying, Chen Yongjun, Qian Zhaoguo, Wu Ke. Genetic Analysis of Taishan/Taikemai Serial Wheat Based on SNP Molecular Markers [J]. Crops, 2021, 37(5): 64-71.
[6] Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9.
[7] Lou Shubao, Li Fengyun, Tian Guokui, Wang Haiyan, Tian Zhendong, Wang Lichun, Liu Xicai, Wang Hui. Evaluation of Germplasms for Resistance to Potato Late Blight and Molecular Markers Assisted Screening [J]. Crops, 2021, 37(4): 196-201.
[8] Du Xiaoyu, Li Nannan, Zou Shaokui, Wang Lina, Lü Yongjun, Zhang Qian, Li Shuncheng, Yang Guangyu, Han Yulin. Comprehensive Analysis of Main Traits of Newly Bred Wheat Varieties (Lines) in Southern Huang-Huai Region [J]. Crops, 2021, 37(4): 38-45.
[9] Gao Qing, Zhang Yaling, Zhou Yili, Yu Lianpeng, Nie Qiang, Jin Xuehui. Identification of Major Resistance Genes and Resistance Evaluation to Rice Blast in Japonica Rice Varieties in Heilongjiang Province [J]. Crops, 2021, 37(4): 59-66.
[10] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[11] Li Mengyu, Gao Chuang, Li Qiaoyun, Xu Kaige, Wang Siyu, Niu Jishan. Identification and Correlation Analysis of Wheat Cultivars (Lines) Resistance to Leaf Blight Caused by Bipolaris sorokiniana at Seedling Stage and Filling Stage [J]. Crops, 2021, 37(3): 40-45.
[12] Zhou Zhengping, Tian Baogeng, Chen Wanhua, Wang Ziyang, Yuan Wei, Liu Shiping. Effects of Different Tillage Methods and Straw Returning on Soil Nutrients and Wheat Yield and Quality [J]. Crops, 2021, 37(3): 78-83.
[13] Zhao Qingling, Lin Wen, Ren Aixia, Zhang Rongrong, Li Lei, Sun Min, Gao Zhiqiang. Effects of Topdressing in Spring on Population Construction and Grain Filling Process of Winter Wheat [J]. Crops, 2021, 37(3): 99-105.
[14] Jia Zimiao, Qiu Yuliang, Lin Zhishan, Wang Ke, Ye Xingguo. Research Progress on Wheat Improvement by Using Desirable Genes from Its Relative Species [J]. Crops, 2021, 37(2): 1-14.
[15] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!