Crops ›› 2021, Vol. 37 ›› Issue (5): 50-56.doi: 10.16035/j.issn.1001-7283.2021.05.008

Previous Articles     Next Articles

Difference Analysis of Dry Matter and Nitrogen Accumulation and Translocation of Waxy Sorghum Applied in Different Eras in Guizhou Province

Gao Jie1(), Li Xiaorong2, Feng Guangcai3, Li Qingfeng1, Peng Qiu1()   

  1. 1Guizhou Institute of Upland Crops/Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
    2Chuxiong Autonomous Prefecture Academy of Agricultural Sciences, Chuxiong 675000, Yunnan, China
    3Poverty Alleviation and Development Office of Qiandongnan Prefecture, Kaili 556000, Guizhou, China
  • Received:2020-12-10 Revised:2021-03-02 Online:2021-10-15 Published:2021-10-14
  • Contact: Peng Qiu E-mail:gaojie396300520@163.com;p5615@sina.com

Abstract:

The new and old waxy sorghum varieties (lines) in Guizhou province were used as the research materials to analyze the yield, dry matter and nitrogen accumulation and translocation by random block test design. The results showed that the yield, dry matter, and nitrogen accumulation of the new varieties increased by 25.5%, 23.4%, and 35.2%, respectively, compared with the old lines. Dry matter and nitrogen accumulation of new varieties post-flowering accounted for 32.6% and 31.2%, respectively, which were significantly higher than that of old lines. The contribution of post-flowering dry matter and nitrogen accumulation of new varieties to grain yield was 65.2% and 49.6%, which were 10.2% and 12.2% higher than that of the old lines, respectively. The dry matter and nitrogen translocation of new varieties increased by 12.1% and 32.5%, respectively, compared with the old lines and the contribution of dry matter and nitrogen translocation in the leaves of the new varieties to grain increased 3.0% and 4.1%, respectively. At the same time, there were significant positive correlations between the dry matter, nitrogen accumulation and translocation with yield. In conclusion, the enhancement of nitrogen accumulation and translocation capacity post-flowering promoted the increase of total dry matter accumulation which led to the increase of yield of new varieties.

Key words: Waxy sorghum, Dry matter accumulation, Yield, Nitrogen translocation

Table 1

Basic information of experimental materials"

材料
Material
品种(系)
Variety
(line)
来源
Origin
育成时间
Breeding
time
应用年代
Age of
application
黑壳糯
Heikenuo
品系 仁怀地方种 1989筛选 1990s
红壳糯
Hongkenuo
品系 仁怀地方种 1989筛选 1990s
红缨子
Hongyingzi
品种 贵州审定品种 2008省审 2010s
黔高8号
Qiangao 8
品种 贵州审定品种 2009省审 2010s

Fig.1

Changes of yield, dry matter and nitrogen accumulation of waxy sorghum in different ages in Guizhou Different letters indicate significant difference (P<0.05), the same below"

Fig.2

Ratio of pre- and post-flowering dry matter to total biomass of waxy sorghum varieties (lines) in different ages in Guizhou"

Fig.3

Contribution proportion of post-flowering dry matter accumulation and translocation to grain yield of waxy sorghum varieties (lines) in different ages in Guizhou"

Fig.4

Ratio of pre- and post-flowering nitrogen accumulation to total N accumulation of waxy sorghum varieties (lines) in different ages in Guizhou"

Fig.5

Contribution proportion of post-flowering nitrogen accumulation and translocation to grain yield of waxy sorghum varieties (lines) in different ages in Guizhou"

Table 2

Changes of DMTA and DMTCP of waxy sorghum varieties (lines) in different ages in Guizhou province"

年度
Year
品种(系)
Variety
(line)
营养器官干物质转运量
DMTA (kg/hm2)
营养器官干物质转运率
DMTR (%)
营养器官干物质转运对籽粒的贡献
DMTCP (%)
茎Stem 叶Leaf 总Total 茎Stem 叶Leaf 总Total 茎Stem 叶Leaf 总Total
2017 黑壳糯 1271.7a 560.3b 1832.0b 16.7a 7.4b 24.1a 27.7a 12.2b 39.9a
红壳糯 1288.3a 557.8b 1846.1b 16.3a 7.0b 23.3a 27.9a 12.1b 40.0a
红缨子 1148.1b 929.1a 2077.2a 14.1b 11.4a 25.5a 18.7b 15.1a 33.8b
黔高8号 1143.6b 938.7a 2082.3a 13.9b 11.4a 25.3a 18.3b 15.0a 33.3b
2018 黑壳糯 1173.6a 588.1c 1761.7c 15.3a 7.7b 23.0a 23.1a 11.6b 34.7a
红壳糯 1147.2b 609.7b 1756.9c 15.1a 8.0b 23.1a 22.4b 11.9b 34.3a
红缨子 1031.9c 948.7a 1980.6a 11.6b 10.7a 22.3a 16.0c 14.7a 30.7b
黔高8号 970.9d 959.4a 1930.3b 10.9b 10.8a 21.7a 15.1d 15.0a 30.1b

Table 3

Changes of NTA and NTCP of waxy sorghum varieties (lines) in different ages in Guizhou province"

年度
Year
品种(系)
Variety
(line)
营养器官氮素转运量
NTA (kg/hm2)
营养器官氮素转运率
NTR (%)
营养器官氮素转运对籽粒的贡献
NTCP (%)
茎Stem 叶Leaf 总Total 茎Stem 叶Leaf 总Total 茎Stem 叶Leaf 总Total
2017 黑壳糯 26.5a 18.8c 45.3b 25.9a 18.4b 44.3b 35.0a 24.8b 59.8a
红壳糯 28.0a 18.6c 46.6b 26.6a 17.7b 44.3b 36.3a 24.2b 60.5a
红缨子 28.4a 31.9b 60.3a 22.7b 25.5a 48.2a 25.0b 28.1a 53.1b
黔高8号 30.1a 34.6a 64.7a 22.9b 26.4a 49.3a 25.6b 29.4a 55.0b
2018 黑壳糯 28.6a 22.8b 51.4c 25.6a 20.4b 46.0b 34.1a 27.2b 61.3a
红壳糯 30.6a 23.8b 54.4b 26.0a 20.2b 46.2b 33.7a 26.2b 59.9a
红缨子 31.2a 36.5a 67.7a 23.9b 28.0a 51.9a 26.2b 30.6a 56.8b
黔高8号 32.3a 37.0a 69.3a 24.1ab 27.6a 51.7a 26.7b 30.6a 57.3b

Fig.6

Relationship among grain yield with dry matter and nitrogen accumulation and translocation of waxy sorghum in different ages in Guizhou province"

[1] Leiser W L, Rattunde H F, Piepho H P, et al. Getting the most out of sorghum low-input field trials in west Africa using spatial adjustment. Journal of Agronomy and Crop Science, 2012, 198(5):349-359.
doi: 10.1111/jac.2012.198.issue-5
[2] 王劲松, 焦晓燕, 丁玉川, 等. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. 作物学报, 2015, 41(8):1269-1278.
[3] 李嵩博, 唐朝臣, 陈峰, 等. 中国粒用高粱改良品种的产量和品质性状时空变化. 中国农业科学, 2018, 51(2):246-256.
[4] 宋仁本, 卢峰, 卢庆善, 等. 我国高粱生产演变及发展前景分析. 杂粮作物, 2002(4):216-218.
[5] 王瑞, 王金胜, 张福耀, 等. 1970s-2000s中国高粱杂交种亲本遗传距离演变的SSR分析. 中国农业科学, 2015, 48(3):415-425.
[6] 焦少杰, 王黎明, 姜艳喜, 等. 黑龙江省高粱生产发展演变过程分析. 黑龙江农业科学, 2015(5):138-144.
[7] 彭秋. 贵州酿造高粱育种现状、问题及对策. 种子, 2011, 30(2):68-71.
[8] Ciampitti I A, Vyn T J. Grain nitrogen source changes over time in maize:a review. Crop Science, 2013, 53(2):366-377.
doi: 10.2135/cropsci2012.07.0439
[9] 赵满兴, 周建斌, 杨绒, 等. 不同施氮量对旱地不同品种冬小麦氮素累积、运输和分配的影响. 植物营养与肥料学报, 2006, 12(2):143-149.
[10] Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Science, 1989, 29(6):1365-1371.
doi: 10.2135/cropsci1989.0011183X002900060007x
[11] Echarte L, Rotnstein S, Tollenaar M. Response of leaf photosythesis and dry matter accumulation to nitrogen supply in old and a new maize hybrids. Crop Science, 2008, 48(2):656-665.
doi: 10.2135/cropsci2007.06.0366
[12] Gaju O, Allard V, Martre P, et al. Nitrogen partitioning and remobilization in relation to leaf senescence,grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 2013, 155:213-223.
doi: 10.1016/j.fcr.2013.09.003
[13] Kong L, Xie Y, Hu L, et al. Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Field Crops Research, 2016, 196:134-144.
doi: 10.1016/j.fcr.2016.06.015
[14] Ciampitti I A, Murrell S, Camberato J, et al. Physiological dynamics of maize nitrogen uptake and partitioning in response to plant density an N stress factors:I. Vegetative phase. Crop Science, 2013, 53(5):2105-2119.
doi: 10.2135/cropsci2013.01.0040
[15] 郑伟, 郭泰, 王志新, 等. 黑龙江省不同年代育成大豆品种主要农艺性状的遗传改良. 中国油料作物学报, 2015, 37(6):797-802.
[16] 王振华, 张喜英, 陈素英, 等. 不同年代冬小麦品种产量性状和生理生态指标差异分析. 中国生态农业学报, 2007(3):75-79.
[17] 刘梅, 吴广俊, 路笃旭, 等. 不同年代玉米品种氮素利用效率与其根系特征的关系. 植物营养与肥料学报, 2017, 23(1):71-82.
[18] 张仁和, 杜伟莉, 郭东伟, 等. 陕西省不同年代玉米品种产量和氮效率性状的变化. 作物学报, 2014, 40(5):915-923.
[19] 石玉, 于振文, 王东, 等. 施氮量和底追比例对小麦氮素吸收转运及产量的影响. 作物学报, 2006, 32(12):1860-1866.
[20] 姜东, 于振文, 李永庚, 等. 高产小麦营养器官临时贮存物质积运及其对粒重的贡献. 作物学报, 2003, 29(1):31-36.
[21] 沈建辉, 戴廷波, 荆奇, 等. 施氮时期对专用小麦干物质和氮素积累、运转及产量和蛋白质含量的影响. 麦类作物学报, 2004, 24(1):55-58.
[22] 张仁和, 王博新, 杨永红, 等. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017, 50(12):2238-2246.
[23] 赵万春, 董剑, 高翔, 等. 施氮对杂交小麦不同器官氮素积累与转运及其杂种优势的影响. 作物学报, 2007, 33(1):191-195.
[24] 荆奇, 戴廷波, 姜东, 等. 不同生态条件下基因型小麦干物质和氮素累积分配. 南京农业大学学报, 2004, 27(1):1-5.
[25] 高杰, 李青风, 汪灿, 等. 不同氮素水平对糯高粱物质生产及氮素利用特性的影响. 作物杂志, 2017(6):1-4.
[26] 张均华, 刘建立, 张佳宝, 等. 施氮量对稻麦干物质转运与氮肥利用的影响. 作物学报, 2010, 36(10):1736-1742.
doi: 10.3724/SP.J.1006.2010.01736
[27] 郭天财, 宋晓, 马冬云, 等. 氮素营养水平对冬小麦碳氮运转的影响. 西北植物学报, 2007, 27(8):1605-1610.
[28] 张中东, 郭正宇, 宫帅, 等. 新老玉米品种花粒期干物质及氮素积累转运机制的差异分析. 华北农学报, 2017, 32(6):182-191.
[1] Zhang Pingzhen, Zhang Kehou, Chen Ying, Chen Jingping, Luo Jianke, Wang Zeyu. The Effects Analysis of Nitrogen, Phosphorus and Potassium Fertilization on Oat and Establishment of Yield Regression Model under Irrigation Condition [J]. Crops, 2021, 37(5): 101-107.
[2] Deng Chaochao, Wang Lei, Xu Ye, Zhou Qi, Su Cuicui, Cai Xiaobin, Miao Pinggui, Zhao Haipeng, Zhang Yan, Wang Yucai, Zhang Xiangping. Effects of Nitrogen and Sowing Rate on Yield and Quality of Fresh Leaves in Barley [2011(07)814] [J]. Crops, 2021, 37(5): 108-113.
[3] Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127.
[4] Shi Nan, Gao Zhiqiang, Hu Haiyan, Chen Chongyi, Wen Shuangya. The Effects of Ordered Machine Thickening and Reducing Fertilizer on Yield and Partial Fertilizer Productivity of Hybrid Rice [J]. Crops, 2021, 37(5): 128-133.
[5] Liu Wei, Zhou Jianxiong, Xie Yuanyuan, Zhang Xu, Xiong Yousheng, Xu Xiangyu, Yuan Jiafu, Xiong Hanfeng. Effects of One-Time Basal Application of Nitrogen Fertilizer on Fresh Ear Yield, Quality and Nitrogen Utilization Efficiency of Summer-Sown Fresh Sweet Corn [J]. Crops, 2021, 37(5): 134-139.
[6] Cao Lixia, Zhou Haitao, Zhang Xinjun, Shi Bihong, Zhang Lixia, Li Yunxia, Liu Junxin, Bai Jing, Zhao Shifeng. Effects of Sowing Rates on Yield of Two Buckwheat Varieties in Northern Hebei [J]. Crops, 2021, 37(5): 140-145.
[7] Zhang Qi, Wei Zhenwu, Yan Tianfang. Correlation and Path Analysis of Oat Seed Yield with Agronomic Characters in Jiang-Huai Area [J]. Crops, 2021, 37(5): 146-152.
[8] Liu Xin, Li Huixia, Tian Gang, Wang Yuwen, Liu Hong, Cao Jinjun, Cheng Kai, Wang Zhenhua, Liu Yongzhong, Li Wanxing. Effects of Water Control during the Whole Growth Period on the Growth Development and Quality of Millet [J]. Crops, 2021, 37(5): 181-186.
[9] Zhang Ting, Zhang Bowen, Li Guolong, Cao Yang, Li Yue, Zhang Shaoying. Effects of Phosphorus Application Rate and Method on Photosynthetic Performance and Yield of Sugar Beet [J]. Crops, 2021, 37(5): 187-193.
[10] Zhang Shaoping, Geng Xiaoli, Wu Huijuan, Li Deming, Liu Qian, Gao Zhanqi. Breeding and Evaluating of Variety Characteristics of Avena sativa ‘Caoyan No.1’ [J]. Crops, 2021, 37(5): 219-224.
[11] Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49.
[12] Li Jiahui, Cheng Qin, Ou Kewei, Tan Qinliang, Pang Xinhua, Zhou Quanguang, Lü Ping, Song Qiqi, Tang Yuwei, Zhu Pengjin. Comparison of Tiller Characters of Sugarcane Varieties (Lines) in Different Sugarcane Regions and Their Effects on Yield and Yield Components [J]. Crops, 2021, 37(5): 79-86.
[13] Tang Zhiqiang, Zhang Liying, He Na, Ma Zuobing, Zhao Mingzhu, Wang Changhua, Zheng Wenjing, Yin Yong’an, Wang Hui. Effects of Mechanical Direct Dry Seeding on Rice Growth, Photosynthetic Characteristics and Yield [J]. Crops, 2021, 37(5): 87-94.
[14] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
[15] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Wang Can, Zhang Guobing, Zhou Lengbo, Peng Qiu. Effects of Nitrogen Fertilizer on Yield and Nitrogen Use Characteristics in Waxy Sorghum Cultivar "Hongyingzi" [J]. Crops, 2021, 37(4): 118-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!