Crops ›› 2021, Vol. 37 ›› Issue (5): 187-193.doi: 10.16035/j.issn.1001-7283.2021.05.029

Previous Articles     Next Articles

Effects of Phosphorus Application Rate and Method on Photosynthetic Performance and Yield of Sugar Beet

Zhang Ting(), Zhang Bowen, Li Guolong, Cao Yang, Li Yue, Zhang Shaoying()   

  1. Sugar Beet Physiological Institute, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
  • Received:2020-09-27 Revised:2020-11-25 Online:2021-10-15 Published:2021-10-14
  • Contact: Zhang Shaoying E-mail:1121526045@qq.com;syzh36@aliyun.com

Abstract:

Photosynthesis is the material basis for yield formation. In order to screen out the most suitable phosphorus application amount and method for sugar beet yield formation, and to optimize sugar beet fertilization management, this experiment set up three different phosphorus application methods (based application before sowing; based application 2/3 before sowing and topdressing 1/3 at fast growth stage of leaves; based application 2/3 before sowing and topdressing 1/3 at sugar increasing stage of root) and five phosphorus application amounts (60, 90, 120, 150, 180kg/ha). We studied the effects of different phosphorus application methods and phosphorus application amounts on the photosynthetic physiological performance and yield of sugar beet. The results showed that under the same fertilization method, with the increasing amount of phosphorus, the LAI, SPAD value, Pn, dry matter accumulation per plant and yield of sugar beet were all increased first and then stabilized or decreased. When the amount of phosphorus was 150kg/ha, all photosynthetic indexes and yield reached the maximum. Under the same phosphorus application amount, based application 2/3 before sowing and topdressing 1/3 at fast growth stage of leaves had the best effects on promoting the photosynthetic performance and yield formation of sugar beet. Therefore, the recommended phosphorus application amount for high-yield sugar beet was 150kg/ha. The best phosphorus application methods was 2/3 of the base application before sowing, and 1/3 of the topdressing during the fast growth stage of leaves.

Key words: Sugar beet, Phosphorus application amount, Fertilization method, Photosynthetic physiology, Yield

Table 1

Soil nutrients tatus and pH"

有机质
Organic matter
(g/kg)
全氮
Total nitrogen
(g/kg)
全磷
Total phosphorus
(g/kg)
全钾
Total potassium
(g/kg)
速效氮
Available nitrogen
(mg/kg)
有效磷
Available phosphorus
(mg/kg)
速效钾
Available potassium
(mg/kg)
pH
11.25 0.69 0.46 17.89 78.63 10.23 110.95 8.60

Table 2

Experiment design kg/hm2"

处理
Treatment
施磷时期及用量Phosphorus application period and rate
基施
Base fertilizer
application
叶丛快速生长期
Fast growth stage
of leaves
块根糖分增长期
Sugar increasing
stage of root
CK 0 0 0
A1 60 0 0
A2 90 0 0
A3 120 0 0
A4 150 0 0
A5 180 0 0
B1 40 20 0
B2 60 30 0
B3 80 40 0
B4 100 50 0
B5 120 60 0
C1 40 0 20
C2 60 0 30
C3 80 0 40
C4 100 0 50
C5 120 0 60

Table 3

Effects of phosphorus application amount and method on LAI of sugar beet"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaves
块根糖分增长期
Increasing stage of sugar in root
糖分积累期
Period of sugar accumulation
CK 0.05±0.03c 2.84±0.20c 4.37±0.01d 4.34±0.01d
A1 0.07±0.01c 3.67±0.26c 5.23±0.29d 5.15±0.11d
A2 0.07±0.01c 4.36±1.17bc 5.28±0.41d 5.24±0.28d
A3 0.08±0.02bc 4.68±0.33b 5.58±0.19cd 5.49±0.49cd
A4 0.11±0.01a 4.87±0.76b 5.99±0.64c 5.86±0.66c
A5 0.10±0.01ab 4.87±0.61ab 5.43±0.32d 5.49±0.30d
B1 0.07±0.02c 3.86±0.04c 5.44±0.03d 5.28±0.87d
B2 0.07±0.02c 4.32±0.36c 5.48±0.22d 5.46±0.05d
B3 0.07±0.02c 4.75±1.28b 6.65±0.49ab 6.24±0.52bc
B4 0.08±0.01c 5.26±0.65a 7.21±1.60a 7.06±0.21a
B5 0.08±0.01c 5.26±1.15a 6.55±0.71bc 6.84±0.92ab
C1 0.06±0.01c 3.62±0.46c 5.38±0.26d 5.26±0.24d
C2 0.07±0.02c 3.78±0.18c 5.50±0.18d 5.45±0.05d
C3 0.07±0.01c 4.29±0.11c 6.07±0.12c 5.73±0.16c
C4 0.08±0.01c 4.56±0.27b 6.11±0.93c 6.07±1.16c
C5 0.08±0.01c 4.69±0.11b 6.02±0.02c 5.88±0.93c

Table 4

Effects of phosphorus application amount and method on SPAD value of sugar beet leaves"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaves
块根糖分增长期
Increasing stage of sugar in root
糖分积累期
Period of sugar accumulation
CK 51.2±3.0c 49.0±0.3d 47.2±1.6g 51.2±0.1d
A1 54.7±0.3c 51.2±0.9d 49.8±0.8ef 51.3±1.5d
A2 55.1±1.2c 52.3±1.2c 50.2±1.7e 52.3±3.6d
A3 57.3±0.1b 53.0±0.1b 51.1±0.4d 56.3±1.5bc
A4 58.6±1.9a 53.5±0.3ab 52.9±0.6ab 57.7±2.5a
A5 58.2±2.9ab 53.0±0.5b 49.5±1.7fg 55.2±1.9d
B1 54.0±1.2c 52.0±1.4c 47.7±0.2g 54.2±1.0d
B2 54.6±0.8c 52.5±1.8bc 50.8±0.1d 54.2±4.1d
B3 55.5±3.0bc 53.5±0.4b 51.8±0.6d 57.1±0.5ab
B4 57.7±1.4b 54.1±0.1a 54.4±0.3a 57.8±2.3a
B5 56.6±5.4b 54.0±0.6a 51.7±0.3d 56.5±0.7b
C1 53.5±0.4c 50.3±0.1d 48.2±2.3g 52.0±2.2d
C2 54.3±0.6c 51.2±0.4cd 50.3±0.8de 52.8±0.6d
C3 55.3±1.9c 52.3±0.1c 51.3±0.3d 55.6±2.0cd
C4 57.8±0.7b 52.7±2.7b 52.8±0.3bc 56.8±0.7b
C5 57.8±0.7b 52.9±0.6b 51.8±1.3cd 53.6±2.9d

Fig.1

Effects of phosphorus application amount and method on Pn of sugar beet"

"

处理
Treatment
苗期
Seedling stage
叶丛快速生长期
Fast growth stage of leaves
块根糖分增长期
Increasing stage of sugar in root
糖分积累期
Period of sugar accumulation
CK 0.91±0.41c 63.77±1.04f 236.62±3.57f 330.22±11.19g
A1 1.17±0.14c 75.65±27.51f 244.41±12.97f 334.86±24.62g
A2 1.31±0.12c 87.39±1.97f 301.32±46.15de 389.17±52.01g
A3 1.42±0.02bc 93.99±2.39d 320.86±16.44bc 453.37±31.25d
A4 1.85±0.32a 99.82±9.92cd 344.32±26.47b 462.32±16.41cd
A5 1.68±0.10ab 105.54±10.38c 350.16±6.99ab 452.64±9.10d
B1 1.12±0.23c 89.20±5.66e 262.72±16.58ef 364.76±29.19g
B2 1.16±0.07c 89.36±4.50de 312.99±7.96cd 392.88±77.10g
B3 1.28±0.23c 107.35±20.71bc 338.72±7.46b 484.57±34.78bc
B4 1.38±0.22c 117.98±9.92ab 385.77±72.25a 545.88±4.60a
B5 1.40±0.07c 122.38±13.91a 379.48±36.10a 503.85±10.44ab
C1 1.12±0.09c 66.26±3.15f 218.49±43.98f 337.98±55.99g
C2 1.18±0.31c 74.32±0.50f 289.41±30.93e 383.37±11.80g
C3 1.23±0.08c 84.09±1.15f 320.60±24.61c 400.08±37.01fg
C4 1.35±0.30c 88.55±0.11ef 340.32±23.59b 449.42±28.11de
C5 1.39±0.16c 91.98±3.38d 338.14±20.77b 423.82±54.18ef

Fig.2

Effects of phosphorus application amount and method on R/T (fresh weight) of sugar beet Different lowercase letters indicate significant difference at 0.05 level, the same below"

Fig.3

Effects of phosphorus application amount and method on yield of sugar beet"

Fig.4

Relationship between phosphorus application amount and sugar beet yield"

[1] 戚昕元, 曹国军, 耿玉辉, 等. 滴灌磷肥分配比例对玉米磷素吸收利用的影响. (2020-06-08)[2020-09-20]. 吉林农业大学学报, http://doi.org/10.13327/j.jjlau.2020.5684.
[2] 王聪宇. 吉林省西部超高产玉米养分吸收积累特性及磷肥高效施用技术研究. 长春:吉林农业大学, 2014.
[3] 何佩云, 黄小燕, 王雨, 等. 磷肥用量对甜荞Fagopyrum esculentum根系形态、产量及品质的影响. 福建农业学报, 2019, 34(9):1003-1008.
[4] 岳俊芹, 李向东, 邵运辉, 等. 氮钾固定配施下施磷量对小麦光合、干物质转运及产量形成的影响. 麦类作物学报, 2020, 40(4):473-481.
[5] Zhang W, Chen X X, Liu Y M, et al. The role of phosphorus supply in maximizing the leaf area,photosynthetic rate,coordinated to grain yield of summer maize. Field Crops Research, 2018, 219:113-119.
[6] 肖旭峰, 刘明月, 周庆红, 等. 氮磷钾肥配施与马铃薯微型薯产量的相关性. 西北农业学报, 2012, 21(9):69-73.
[7] 邢倩, 谷艳芳, 高志英, 等. 氮、磷、钾营养对冬小麦光合作用及水分利用的影响. 生态学杂志, 2008, 27(3):355-360.
[8] 张勉, 孙敏, 高志强, 等. 施磷对旱地小麦土壤水分、干物质累积和转运的影响. 麦类作物学报, 2016, 36(1):98-103.
[9] 曹爱琴, 严小龙. 不同供磷条件下大豆根构型的适应性变化. 华南农业大学学报, 2001, 22(1):92.
[10] 金剑, 王光华, 刘晓冰, 等. 不同施磷量对大豆苗期根系形态性状的影响. 大豆科学, 2006, 25(4):360-364.
[11] Israel D. Investigation of the role of phosphorus in symbiotic nitrogen fixation. Plant Physiology, 1987, 84:835-840.
[12] 赵伟, 甄天悦, 张子山, 等. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量. 作物学报, 2020, 46(2):249-258.
[13] 闫威, 李国龙, 李智, 等. 施氮量和密度互作对全覆膜旱作甜菜光合特性和块根产量的影响. 作物杂志, 2019(4):100-106.
[14] 全国甜菜标准化中心. 糖料甜菜:GB/T 10496-2002. 北京: 中国标准出版社, 2002.
[15] Kouas S, Labidi N, Debez A, et al. Effect of P on nodule formation and N fixation in bean. Agronomy for Sustainable Development, 2005, 25:389-393.
[16] 李尚霞, 迟玉成, 杨吉顺, 等. 磷肥不同用量对蓖麻光合作用和产量的影响. 吉林农业科学, 2013, 38(2):55-56.
[17] 林诚, 李清华, 王飞, 等. 不同施磷水平对冷浸田水稻磷含量、光合特性及产量的影响. 热带亚热带植物学报, 2016, 24(5):553-558.
[18] Raabtk R, Fredeen A. Effects of phosphorus nutrition on photosynthesis in Glycine max L. Planta, 1990, 181(3):399-405.
[19] 潘晓华, 石庆华, 郭进耀, 等. 无机磷对植物叶片光合作用的影响及其机理的研究进展. 植物营养与肥料学报, 1997, 3(3):201-208.
[20] 王国兴, 徐福利, 王渭玲, 等. 氮磷钾及有机肥对马铃薯生长发育和干物质积累的影响. 干旱地区农业研究, 2013, 31(3):106-111.
[21] 张艳艳, 李文金, 陈建生, 等. 麦后直播花生施氮对根瘤生长发育、荚果产量和氮素利用的影响. 花生学报, 2015, 44(1):18-22.
[22] 陈远学, 李汉邯, 周涛, 等. 施磷对间套作玉米叶面积指数、干物质积累分配及磷肥利用效率的影响. 应用生态学报, 2013, 24(10):2799-2806.
[23] 耿玉辉, 曹国军, 叶青, 等. 磷肥不同施用方式对土壤速效磷及春玉米磷素吸收和产量的影响. 华南农业大学学报, 2013, 34(4):470-474.
[24] 张勉, 孙敏, 高志强, 等. 施磷对旱地小麦土壤水分、干物质累积和转运的影响. 麦类作物学报, 2016, 36(1):98-103.
[25] Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices. Nature, 2002, 418:671-677.
[26] Cassman K G, Dobermann A, Walters D T, et al. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review of Environment and Resources, 2003, 28:315-358.
[27] 范秀艳, 杨恒山, 高聚林, 等. 施磷方式对高产春玉米磷素吸收与磷肥利用的影响. 植物营养与肥料学报, 2013, 19(2):312-320.
[28] 赵庆雷, 王凯荣, 马加清, 等. 长期不同施肥模式对稻田土壤磷素及水稻磷营养的影响. 作物学报, 2009, 35(8):1539-1545.
[29] 段刚强, 杨恒山, 张瑞富, 等. 施磷深度对春玉米干物质及磷积累与转运的影响. 干旱地区农业研究, 2016, 34(5):103-108.
[1] Zhang Pingzhen, Zhang Kehou, Chen Ying, Chen Jingping, Luo Jianke, Wang Zeyu. The Effects Analysis of Nitrogen, Phosphorus and Potassium Fertilization on Oat and Establishment of Yield Regression Model under Irrigation Condition [J]. Crops, 2021, 37(5): 101-107.
[2] Deng Chaochao, Wang Lei, Xu Ye, Zhou Qi, Su Cuicui, Cai Xiaobin, Miao Pinggui, Zhao Haipeng, Zhang Yan, Wang Yucai, Zhang Xiangping. Effects of Nitrogen and Sowing Rate on Yield and Quality of Fresh Leaves in Barley [2011(07)814] [J]. Crops, 2021, 37(5): 108-113.
[3] Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127.
[4] Shi Nan, Gao Zhiqiang, Hu Haiyan, Chen Chongyi, Wen Shuangya. The Effects of Ordered Machine Thickening and Reducing Fertilizer on Yield and Partial Fertilizer Productivity of Hybrid Rice [J]. Crops, 2021, 37(5): 128-133.
[5] Liu Wei, Zhou Jianxiong, Xie Yuanyuan, Zhang Xu, Xiong Yousheng, Xu Xiangyu, Yuan Jiafu, Xiong Hanfeng. Effects of One-Time Basal Application of Nitrogen Fertilizer on Fresh Ear Yield, Quality and Nitrogen Utilization Efficiency of Summer-Sown Fresh Sweet Corn [J]. Crops, 2021, 37(5): 134-139.
[6] Cao Lixia, Zhou Haitao, Zhang Xinjun, Shi Bihong, Zhang Lixia, Li Yunxia, Liu Junxin, Bai Jing, Zhao Shifeng. Effects of Sowing Rates on Yield of Two Buckwheat Varieties in Northern Hebei [J]. Crops, 2021, 37(5): 140-145.
[7] Zhang Qi, Wei Zhenwu, Yan Tianfang. Correlation and Path Analysis of Oat Seed Yield with Agronomic Characters in Jiang-Huai Area [J]. Crops, 2021, 37(5): 146-152.
[8] Liu Xin, Li Huixia, Tian Gang, Wang Yuwen, Liu Hong, Cao Jinjun, Cheng Kai, Wang Zhenhua, Liu Yongzhong, Li Wanxing. Effects of Water Control during the Whole Growth Period on the Growth Development and Quality of Millet [J]. Crops, 2021, 37(5): 181-186.
[9] Zhang Shaoping, Geng Xiaoli, Wu Huijuan, Li Deming, Liu Qian, Gao Zhanqi. Breeding and Evaluating of Variety Characteristics of Avena sativa ‘Caoyan No.1’ [J]. Crops, 2021, 37(5): 219-224.
[10] Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49.
[11] Gao Jie, Li Xiaorong, Feng Guangcai, Li Qingfeng, Peng Qiu. Difference Analysis of Dry Matter and Nitrogen Accumulation and Translocation of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2021, 37(5): 50-56.
[12] Ding Liuhuizi, Pi Zhi, Wu Zedong. Construction of SSR Fingerprint and Analysis of Genetic Diversity of Sugar Beet Varieties [J]. Crops, 2021, 37(5): 72-78.
[13] Li Jiahui, Cheng Qin, Ou Kewei, Tan Qinliang, Pang Xinhua, Zhou Quanguang, Lü Ping, Song Qiqi, Tang Yuwei, Zhu Pengjin. Comparison of Tiller Characters of Sugarcane Varieties (Lines) in Different Sugarcane Regions and Their Effects on Yield and Yield Components [J]. Crops, 2021, 37(5): 79-86.
[14] Tang Zhiqiang, Zhang Liying, He Na, Ma Zuobing, Zhao Mingzhu, Wang Changhua, Zheng Wenjing, Yin Yong’an, Wang Hui. Effects of Mechanical Direct Dry Seeding on Rice Growth, Photosynthetic Characteristics and Yield [J]. Crops, 2021, 37(5): 87-94.
[15] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!